scholarly journals Impact of Ultraviolet Radiation on the Aging Properties of SBS-Modified Asphalt Binders

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1111 ◽  
Author(s):  
Huanan Yu ◽  
Xianping Bai ◽  
Guoping Qian ◽  
Hui Wei ◽  
Xiangbing Gong ◽  
...  

Styrene Butadiene Styrene (SBS) polymer-modified asphalt binders have become widely used in asphalt pavement because of their advantages in high- and low-temperature performance and fatigue resistance. Asphalt pavement is inevitably exposed to sunlight and ultraviolet (UV) radiation during its construction and service life. However, consideration of the aging effect of UV radiation is still limited in current pavement design and evaluation systems. In order to evaluate the impact of UV radiation on the aging properties of SBS-modified asphalt binders, UV aging tests were performed on Rolling Thin Film Oven Test (RTFOT)-aged samples with different UV radiation intensities and aging times. Sixteen different groups of tests were conducted to compare the rheological properties and functional group characteristics of SBS-modified asphalt binders. Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR), FTIR, and SEM tests were conducted to evaluate the aging mechanisms in various UV aging conditions. The results found that UV radiation seriously destroys the network structure formed by the cross-linking effect in SBS-modified asphalt binders, which aggravates the degradation of SBS and results in a great change of rheological properties after UV aging. The nature of SBS-modified asphalt binder aging resulted from the degradation of SBS and the changes of asphalt binder base composition, which lead to the transformation of colloidal structure and the deterioration of asphalt binder performance. The tests also found that continuous UV radiation can increase shrinkage stress in the asphalt binder surface and leads to surface cracking of the asphalt binder.

2021 ◽  
Vol 11 (19) ◽  
pp. 9242
Author(s):  
Xiaobing Chen ◽  
Yunfeng Ning ◽  
Yongming Gu ◽  
Ronglong Zhao ◽  
Jinhu Tong ◽  
...  

To investigate the influence of multiple cycles of aging and rejuvenation on the rheological, chemical, and morphological properties of styrene–butadiene–styrene (SBS)-modified asphalt-binders, the asphalt-binders were aged using two laboratory simulation methods, namely a rolling thin film oven (RTFO) test for short-term aging and pressure aging vessel (PAV) for long-term aging. The asphalt-binders were then rejuvenated with three types of rejuvenators (Type I, II, and III) with different dosages (i.e., 6%, 10%, and 14% for the first, second, and third rejuvenation, respectively). A dynamic shear rheometer (DSR) was then used to analyze the effect of rejuvenators on the rheological properties of all the asphalt-binders. The changes in the functional groups and microscopic morphology in the process of multiple aging and rejuvenation cycles were studied using Fourier transform infrared (FTIR) and atomic force microscopy (AFM). The results indicated that the three rejuvenators could soften the stiffness and restore the microstructures of the aged asphalt-binders in the process of repeated aging and rejuvenation from DSR and AFM testing. Considering the rutting and fatigue properties, the Type I rejuvenator exhibited the potential to achieve the desired rejuvenation effects under multiple rejuvenation cycles. During the multiple aging and rejuvenation cycles, the aging resistance of SBSMA decreased gradually from the FTIR results. This inherently limited the number of repeated rejuvenation cycles. This research is conducive to promoting the application of repeated penetrating rejuvenation.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5672
Author(s):  
Xuewen Zheng ◽  
Wenyuan Xu ◽  
Shuangrui Xie

In order to explore the influence mechanism of carbon nanotubes on the ultraviolet (UV) aging properties of the SBS-modified asphalt binder, the changes of functional groups in the one-dimensional infrared spectrum and two-dimensional infrared correlation spectrum are studied in this paper. The results show that the UV aging process of the SBS-modified asphalt binder is the process of alkane chain cleavage and reorganization, the formation of oxygen-containing functional groups and decomposition of SBS. The incorporation of carbon nanotubes can reduce the mutual conversion of methyl and methylene functional groups, inhibit the decomposition of butadiene and the destruction of C = C double bonds in SBS. The degradation of SBS during the process of UV aging leads to the change of many functional groups and acceleration of the aging of the SBS-modified asphalt binder. The addition of carbon nanotubes can effectively alleviate the degradation of SBS and the formation of oxygen-containing functional groups at the early stage of UV aging, and reduce the influence of these two changes on other functional groups; thus, improving the anti-aging performance of the SBS-modified asphalt binder.


2021 ◽  
Vol 13 (18) ◽  
pp. 10271
Author(s):  
Yuchen Guo ◽  
Xuancang Wang ◽  
Guanyu Ji ◽  
Yi Zhang ◽  
Hao Su ◽  
...  

The deteriorating ecological environment and the concept of sustainable development have highlighted the importance of waste reuse. This article investigates the performance changes resulting from the incorporation of shellac into asphalt binders. Seashell powder-modified asphalt was prepared with 5%, 10%, and 15% admixture using the high-speed shear method. The microstructure of the seashell powder was observed by scanning electron microscope test (SEM); the physical-phase analysis of the seashell powder was carried out using an X-ray diffraction (XRD) test; the surface characteristics and pore structure of shellac were analyzed by the specific surface area Brunauer-Emmett-Teller (BET) test; and Fourier infrared spectroscopy (FTIR) qualitatively analyzed the composition and changes of functional groups of seashell powder-modified asphalt. The conventional performance index of seashell powder asphalt was analyzed by penetration, softening point, and ductility (5 °C) tests; the effect of seashell powder on asphalt binder was studied using a dynamic shear rheometer (DSR) and bending beam rheometer (BBR) at high and low temperatures, respectively. The results indicate the following: seashell powder is a coarse, porous, and angular CaCO3 bio-material; seashell powder and the asphalt binder represent a stable physical mixture of modified properties; seashell powder improves the consistency, hardness, and high-temperature performance of the asphalt binder but weakens the low-temperature performance of it; seashell powder enhances the elasticity, recovery performance, and permanent deformation resistance of asphalt binders and improves high-temperature rheological properties; finally, seashell powder has a minimal effect on the crack resistance of asphalt binders at very low temperatures. In summary, the use of waste seashells for recycling as bio-modifiers for asphalt binders is a practical approach.


2020 ◽  
Vol 103 (4) ◽  
pp. 003685042095987
Author(s):  
Ghazi G Al-Khateeb ◽  
Waleed Zeiada ◽  
Mohammed Ismail ◽  
Ahmad Shabib ◽  
Adel Tayara

Major distresses such as rutting, fatigue, and thermal cracking are facing asphalt pavement structures due to continuous heavy traffic loading and climate change. The modification of asphalt binders (one of the main components of the asphalt paving mix) has the potential to mitigate distresses through using different additives. Polymer modified asphalt (PMA) binders showed a noticeable resistance to pavement distresses as reported in previous studies. The present study aims to evaluate the effect of polymer modification on the rheological properties of asphalt binders through laboratory tests. The polymers included styrene-butadiene-styrene (SBS) and epolene emulsifiable (EE2) types. The 60/70 binder was used as a control for comparison. The Mechanistic-Empirical Pavement Design Guide (MEPDG) was also utilized to simulate the effect of PMA binders on the rheological properties under different climatic conditions and structural capacities. Additionally, the MEPDG was further utilized to compare the effect of asphalt binders on rheological properties using four different binder input levels. Findings of the study showed that laboratory tests experienced varying outcomes regarding the most efficient asphalt binder by means of distresses resistance. However, the MEPDG evaluation showed that the overall ranking of asphalt binders positively impacting the rheological properties was as following: (1) 4.5% EE2 PMA, (2) 4% EE2 PMA, (3) 60/70 binder, (4) 5% SBS PMA, and (5) 4% SBS PMA binders. Furthermore, statistical analysis illustrated that the effect of using different binder input levels on the performance of pavement varied relatively to the evaluated distresses. The analysis showed that using different binder input levels would affect, to a certain extent, the asphalt binder influence on rheological properties only when evaluating rutting and fatigue distresses. Therefore, it is recommended that precise asphalt binder inputs, that is, shear complex modulus (G*) and phase angle (δ) are used when designing pavement structures in regions with hot and mild climate conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Ji ◽  
Hui Yao ◽  
Di Wang ◽  
Zhi Suo ◽  
Luhou Liu ◽  
...  

The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR) to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS) modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM) model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.


2015 ◽  
Vol 747 ◽  
pp. 238-241
Author(s):  
Wan Adilah Ismail ◽  
Intan Rohani Endut ◽  
Sit Zaharah Ishak

Sustainable asphalt pavement is important in decreasing material costs by improving the existing material such as modified asphalt binders. It is also needed to provide a quality riding for road users. In achieving quality riding, the material selection and mix design must be correctly examined before using in pavement construction. Then, the aims of this study are to determine suitability of material selected by examining the aggregate properties and modified asphalt binder. In modified asphalt binder, 6% of polyacrylate polymer was added as an additive in 500g of binder content to dissolve. It was checked through Superpave gyratory compactor in determining air voids samples in term of height after compacted. The samples were mixed with different percentages of binder content; 5%, 5.5%, 6% and 6.5% to produce control and polyacrylate modified samples. 8 gyratory for Ninitialand 100 gyratory for Ndesignwere used in compaction of samples to determine air voids in term of height. The results show that 5.5% of binder content of polyacrylate modified samples has lower air voids compare than control samples. Thus, modified binders are able to minimize binder usage and save natural sources and also cost by improving bonding between mixtures to prevent pavement failure


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 92 ◽  
Author(s):  
Fusong Wang ◽  
Lei Zhang ◽  
Xiaoshan Zhang ◽  
Hechuan Li ◽  
Shaopeng Wu

The styrene–butadiene–styrene (SBS)-modified asphalt pavement has been in growing demand in the road construction field owing to its workable mechanical property and temperature durability. This paper prepared a penetrative rejuvenator (PR) with waste cooking oil (WCO) and emulsified asphalt, then applied PR on SBS copolymers to investigate its aging and rejuvenating effects in an asphalt binder. After a thin film oven test (TFOT) and ultraviolet (UV) aging of SBS copolymers, Fourier transform infrared (FTIR) spectra were used to analyse the aged copolymers’ chemical structure. Moreover, both aged and rejuvenated SBS copolymers were added into a fresh asphalt binder to get two kinds of modified asphalt binders, namely, MAAC (modified by aged copolymer) and MARC (modified by rejuvenated copolymer). Aiming to analyse the monomer effect of SBS copolymers in the asphalt binder, the rheological characteristic with dynamic shear rheometer (DSR), chemical structure with FTIR and physical properties with penetration, soft point and ductility tests were investigated using MAAC and MAAC samples. The results showed that rejuvenated SBS copolymer could improve MAAC’s viscoelasticity, but from FTIR spectral analysis, PR resulted in no chemical changes to SBS copolymers. A tough coat which made MAAC of higher stiffness was observed on the copolymer surface after thermal treatment. UV caused evidently negative effects on SBS copolymer because of accelerating oxidation by ozone, which brought about high possibility of cracks during servicing periods of asphalt pavement. In addition, MAAC was inferior in both rheological and physical properties, which reflected the significance and necessity in consideration of alleviating SBS copolymer aging in field.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3986
Author(s):  
Huan-Yun Zhou ◽  
Huai-Bing Dou ◽  
Xian-Hua Chen

Aiming to improve the comprehensive road performance of asphalt binders, especially the high-temperature performance, a novel asphalt binder was prepared by compounding high-quality and low-cost polyethylene (PE) with graphene (GNPs) using a high-speed shearing machine. The rheological properties and interaction mechanism of PE/GNPs composite modified asphalt were investigated using temperature sweep (TeS), multiple stress creep recovery (MSCR), linear amplitude sweep (LAS) and Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM). The experimental results demonstrated that GNPs and PE can synergistically improve the high-temperature performance of asphalt binders and enhance the rutting resistance of pavements; the pre-blended PE/GNPs masterbatch has good medium-temperature fatigue and low-temperature cracking resistance. Meanwhile, PE/GNPs dispersed uniformly in the asphalt matrix, and the microstructure and dispersion of premixed PE/GNPs masterbatch facilitated the asphalt modification. No new absorption peaks appeared in the FT-IR spectra of the composite modified asphalt, indicating that asphalt binders were physically modified with GNPs and PE. These findings may cast light on the feasibility of polyethylene/graphene composite for asphalt modification.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chao Peng ◽  
Jianying Yu ◽  
Jing Dai ◽  
Jian Yin

UV radiation is a main factor to reduce the service life of asphalt pavement due to the UV aging of asphalt binder. To obtain enhanced UV aging resistance, an organic UV absorber called 2-hydroxy-4-n-octoxy-benzophenone (HNOB) had been intercalated into an inorganic UV absorber called Zn/Al layered double hydroxide (LDH) to play a combined anti-UV role in asphalt binder. Fourier transform infrared spectroscopy revealed that HNOB anions have been intercalated into the interlayer galleries of Zn/Al-LDH containing HNOB anions (Zn/Al-HNOB−-LDH). X-ray diffraction results of Zn/Al-LDH containingCO32−anions (Zn/Al-CO32--LDH) andZn/Al-CO32--LDH/styrene-butadiene-styrene (SBS) modified asphalt disclosed that asphalt molecules entered into LDH interlayer galleries to form an expanded phase structure. UV-Vis absorbance patterns showed that Zn/Al-HNOB−-LDH has a better capacity of blocking UV light due to the synergetic effect of HNOB and Zn/Al-LDH. The chemical fractions analysis, conventional physical tests, and rheological tests of SBS modified asphalt,Zn/Al-CO32--LDH/SBSmodified asphalt, and Zn/Al-HNOB−-LDH/SBS modified asphalt before and after UV aging testified that Zn/Al-HNOB−-LDH can improve the UV aging resistance of SBS modified asphalt more significantly.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Yanbo Wang ◽  
Ailian Liu ◽  
Weixiang Ding ◽  
Fangping Rao ◽  
Jun Yuan ◽  
...  

This research explores the effects of using waste engine oil bottom on physical, rheological properties and composite modification mechanism of SBS-modified asphalt. The SBS asphalt binder was modified by WEOB with different concentrations (2, 4, and 6 wt%). The GC-MS and FTIR spectrometry were conducted to evaluate the chemical compositions of WEOB- and WEOB-modified asphalt. RV, DSR, and BBR were tested to evaluate high- and low-temperature pavement performance. Fluorescence microscope (FM) test, bar thin layer chromatograph (BTLC) test, and AFM test were performed to evaluate the micromorphologies and modification mechanism. The test results showed that a new characteristic peak appeared in the infrared spectrum of the WEOB-modified SBS asphalt, indicating a chemical reaction in the modification process. Incorporation of WEOB improves both the high-temperature and low-temperature properties of the SBS asphalt binder. It was confirmed that with the increase of WEOB concentration, the content of colloid gradually increases, which promotes the swelling and compaction of SBS polymer network structure. Furthermore, WEOB promotes the polarity of SBS and forms graft product MAH-g-SBS with asphalt, thus inhibiting the thermal movement of asphalt molecules. On the contrary, light components have a good correlation with the surface roughness of modified asphalt; the results show that the modified asphalt has good rutting resistance.


Sign in / Sign up

Export Citation Format

Share Document