Chemical Composition of Lignitic Humic Acid and Evaluating its Positive impacts on Nutrient Uptake, Growth and Yield of Maize

2014 ◽  
Vol 4 (1) ◽  
pp. 19-25 ◽  
Author(s):  
R. U. Khan ◽  
M. Z. Khan ◽  
M. E. Akhtar ◽  
S. Ahmad ◽  
A. Khan
2020 ◽  
Vol 107 ◽  
pp. 1-4
Author(s):  
Chitra R ◽  
◽  
Vinothini L ◽  

The high yield of ginger is function of adequate and timely supply of plant nutrients. Among the various agronomic technologies influencing the production of ginger, nutrition is found to exert a great influence on growth and yield of ginger. Imbalance, low or no fertilizer application is one of the most important factors in obtaining the poor yield. Hence, the trial was taken to study the effect of organic manures (FYM, neem cake, vermicompost, Azospirillum) and biostimulants (panchakavya, humic acid and PPFM) on growth, yield and nutrient uptake of ginger at Department of Spices and Plantation Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore. The growth parameters like plant height, number of leaves, number of tillers and leaf area were found to be higher in the plants fed with 50% N (FYM) +25% N (Neem cake) + 25% N (Vermicompost) + Azospirillum (5kg/ha) + Panchakavya (3%). The maximum green rhizome yield (23.55 t ha-1) was obtained with the application of 50% N (FYM) +25% N (Neem cake) + 25% N (Vermicompost) + Azospirillum (5kg/ ha) + Panchakavya (3%) per hectare. The highest uptake of nitrogen (119.06 kg ha-1) and potassium (197.56 kg ha-1) was found in the application of 50% N (FYM) +25% N (Neem cake) + 25% N (vermicompost) + Azospirillum (5kg/ ha) + panchakavya (3%) per hectare The maximum amount of Phosphorus uptake (14.35 kg ha-1) was recorded in the application of 50% N (FYM) +25% N (neem cake) + 25% N (vermicompost) + Azospirillum (5kg/ha) + humic acid (0.1%). In ginger cultivation, the application of organic manures and inorganic fertilizers commonly practiced to increase the yield and quality of rhizome. Considering the world demand for organic food, the improvement of soil health, productivity and the availability of local resources, cultivation under organic farming can be encouraged. Keywords: Bio-stimulants; Growth parameters; Ginger; Nutrient uptake; Organic manures; Yield


2020 ◽  
pp. 1-12
Author(s):  
E. K. Al-Fahdawe ◽  
A. A. Al-Sumaidaie ◽  
Y. K. Al-Hadithy

A pots experiment was conducted at the Department of Biology/College of Education for Girls/University of Anbar during Autumn season of 2018-2019 to study the effect of the salinity irrigation water and spray by humic acid in some of morphological, physiological, growth and yield traits of wheat cv. IPa. The experiment was randomized complete block design (RCBD) with three replications. The first factor was assigned for irrigation by saline water at four level (S0, S1, S2 and S3), while the second factor was the foliar spraying of humic acid in three level (0.0, 1.0 and 1.5 g l-1). The results showed that there was significant reduction in plant height, vegetative dry weight, biological yield and chlorophyll leaves content when the plants were irrigated by saline water approached to 41.09 cm, 0.747 g, 0.849 g plant-1 and 38.67 SPAD, respectively at salinity level of 8.3 ds m-1 compared with the plants which irrigated by fresh water. The total carbohydrates were significantly decreased at the treatment of 8.3 ds m-1 reached 18.71 mg g-1. Spray levels humic acid achieved a significant increase in plant height, dry weight of the vegetative part, biological yield and chlorophyll leaves content sprayed at 1.0 and 1.5 g l-1 compared to no sprayed. Nitrogen concentration was significantly increased, while both phosphorus and potassium were decreased in the vegetative parts of wheat as the salinity of irrigation water increased. However, the increase of humic acid levels led to significant increasing in nitrogen, phosphorus and potassium concentration.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


2014 ◽  
Vol 73 ◽  
pp. 96-105 ◽  
Author(s):  
Moustafa M.R. Khalaf ◽  
Gabriela Chilom ◽  
James A. Rice

2017 ◽  
Vol 9 (2) ◽  
pp. 1170-1175 ◽  
Author(s):  
Ankush Ankush ◽  
Vikram Singh ◽  
S. K. Sharma

Drip irrigation technique has proved its superiority over other methods of irrigation due to direct application of water and nutrient in the vicinity of root zone. A field study was conducted to evaluate the effect of irrigation and fertigation scheduling through drip irrigation in tomato (Solanum lycopersicum L.) during Rabi season of 2015-16 at Rajasthan College of Agriculture, MPUAT, Udaipur. There were three irrigation levels and five fertilization levels in split-plot design with three replications. Nutrient content in plant and fruit was found higher under the application of drip irrigation at 100 % PE (I1) and at 100 % RDF through fertigation (F1). Maximum nutrient uptake by tomato i.e. nitrogen (166.83 kg ha-1), phosphorus (41.59 kg ha-1) and potassium (183.08 kg ha-1) was recorded with treatment combination of drip irrigation at 75 % PE (I2) + 75 % RDF through fertigation + 2 foliar spray of 1 % urea phosphate (F3). Similarly, significantly maximum yield and growth attributes i.e. fruit yield (201.25 q ha-1), plant height (67.43 cm) and number of branches (12.33) were registered with treatment combination of drip irrigation at 75 % PE and 75 % RDF through fertigation + 2 foliar spray of 1 % urea phosphate. Drip fertigation method has proved to be very significant in improving nutrient uptake which finally resulting in enhancement of growth and yield of tomato crop.


2020 ◽  
Vol 3 (2) ◽  
pp. 56-64
Author(s):  
Rahayu Arraudah ◽  
Yudhy Harini Bertham ◽  
Hesti Pujiwati ◽  
Bambang Gonggo Murcitro ◽  
Entang Inoriah Sukarjo

Soybean is one of the most popular food crops for the community, but the needs for soybeans have not been fulfilled by soybean production. To meet the needs of soybeans, it is necessary to intensify agricultural land in Ultisol. This study aims to obtain the optimum concentration of humic acid and dosage of the Arbuscular Mycorrhizal Fungi (AMF) to increase soybean plants' production in Ultisols. This research was conducted from January to April 2020 in Beringin Raya Village, Muara Bangkahulu District, Bengkulu City, at an altitude of 10 m above sea level. The research design used a Randomized Complete Block Design (RCBD) two factors with three replications, arranged factorially in experimental units. The first factor is the concentration of humic acid, consisting of 4 levels: 0, 15, 30, and 45 mL L-1 . The second factor is the dose of AMF, consisted of 3 levels, namely: 0, 2.5, and 5 g plant-1. The results showed that the maximum soybean growth and yield in Ultisols were obtained from the humic acid concentration at 45 mL L-1 at the dose of AMF at 2.5 g plant-1 . The resulting production potential is 1.99 tons ha-1 . The administration of humic acid or AMF independently at this research stage had not yet given a maximum response to the growth and yield of soybean in Ultisol.


2016 ◽  
Vol 34 (3) ◽  
pp. 175
Author(s):  
Wiwik Hartatik ◽  
Ladiyani Retno Widowati

<p>Rate of NPK fertilization on rice using NPK compound fertilizer needs to consider soil nutrient status and plant nutrient requirement. The research was aimed to determine the optimum rate of compound fertilizer and the effect of enriched S nutrient of NPKS compound (15-15-15-5S) and NPK compound fertilizer (15-15-15) on the growth and yield of rice. The experiments were conducted at two sites in Galuga, Ciampea Bogor, West Java from April to September 2013, using randomised complete block design with 3 replications. Experiment at site I consisted of 9 treatments: six levels of fertilizers NPKS i.e. 0; 150; 300; 450; 600; and 750 kg/ha, standard fertilizer, NPK compound fertilizer equivalent to standard, and standard fertilizer plus S. Rate of urea, SP-36, and KCl for standard fertilizer treatment was respectively 250, 75, and 50 kg/ha. At site II the treatments consisted of 6 levels of NPK compound fertilizer i.e. 0; 150; 300; 450; 600; and 750 kg/ha and the standard fertilizer with rate of 250 kg/ha of urea, 50 kg/ha SP-36, and 75 kg/ha KCl. Plot size was 4 m x 5 m planted with Ciherang variety. Data collection included chemical properties of soil before and after the experiment, plant height, number of tillers, straw weight, and dry grain weight and the nutrient uptake. The effectiveness of fertilizer was calculated by RAE (Relative Agronomic Effectiveness). Results showed that fertilizer NPKS (15-15-15-5S) at 600 kg/ha effectively increased dry grain weight from 3.63 t/ha to 4.67 t/ha, but was not significantly different from a standard fertilizer treatment. It increased dry grain weight by 29% compared to control. NPK fertilizer (15-15-15) effectively promoted growth and dry grain weight equivalent to standard fertilizer at rate of 300-750 kgha. The optimum rate of NPK compound fertilizer (15-15-15) was 440 kg/ha as was shown with the production performance of 4.12 t/ha with RAE by 58%. NPKS compound fertilizer with rate of 750 kg/ha showed the highest uptake of N, P, and K nutrients and significantly increased the available P in the soil. Whereas NPK compound fertilizer with a rate of 600 kg/ha indicated the highest P nutrient uptake. Fertilizer enrichment with sulfur on NPKS fertilizer (15-15-15-5S) did not significant affect on grain dry weight.</p>


Sign in / Sign up

Export Citation Format

Share Document