scholarly journals The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions

1991 ◽  
Vol 11 (1) ◽  
pp. 1-22 ◽  
Author(s):  
DH Hall ◽  
RL Russell
2008 ◽  
Vol 183 (5) ◽  
pp. 881-892 ◽  
Author(s):  
Mingyu Gu ◽  
Kim Schuske ◽  
Shigeki Watanabe ◽  
Qiang Liu ◽  
Paul Baum ◽  
...  

Synaptic vesicles must be recycled to sustain neurotransmission, in large part via clathrin-mediated endocytosis. Clathrin is recruited to endocytic sites on the plasma membrane by the AP2 adaptor complex. The medium subunit (μ2) of AP2 binds to cargo proteins and phosphatidylinositol-4,5-bisphosphate on the cell surface. Here, we characterize the apm-2 gene (also called dpy-23), which encodes the only μ2 subunit in the nematode Caenorhabditis elegans. APM-2 is highly expressed in the nervous system and is localized to synapses; yet specific loss of APM-2 in neurons does not affect locomotion. In apm-2 mutants, clathrin is mislocalized at synapses, and synaptic vesicle numbers and evoked responses are reduced to 60 and 65%, respectively. Collectively, these data suggest AP2 μ2 facilitates but is not essential for synaptic vesicle recycling.


2015 ◽  
Vol 370 (1666) ◽  
pp. 20140309 ◽  
Author(s):  
Scott W. Emmons

The article ‘Structure of the nervous system of the nematode Caenorhabditis elegans ' (aka ‘The mind of a worm’) by White et al. , published for the first time the complete set of synaptic connections in the nervous system of an animal. The work was carried out as part of a programme to begin to understand how genes determine the structure of a nervous system and how a nervous system creates behaviour. It became a major stimulus to the field of C. elegans research, which has since contributed insights into all areas of biology. Twenty-six years elapsed before developments, notably more powerful computers, made new studies of this kind possible. It is hoped that one day knowledge of synaptic structure, the connectome , together with results of many other investigations, will lead to an understanding of the human brain. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society .


The structure and connectivity of the nervous system of the nematode Caenorhabditis elegans has been deduced from reconstructions of electron micrographs of serial sections. The hermaphrodite nervous system has a total complement of 302 neurons, which are arranged in an essentially invariant structure. Neurons with similar morphologies and connectivities have been grouped together into classes; there are 118 such classes. Neurons have simple morphologies with few, if any, branches. Processes from neurons run in defined positions within bundles of parallel processes, synaptic connections being made en passant . Process bundles are arranged longitudinally and circumferentially and are often adjacent to ridges of hypodermis. Neurons are generally highly locally connected, making synaptic connections with many of their neighbours. Muscle cells have arms that run out to process bundles containing motoneuron axons. Here they receive their synaptic input in defined regions along the surface of the bundles, where motoneuron axons reside. Most of the m orphologically identifiable synaptic connections in a typical animal are described. These consist of about 5000 chemical synapses, 2000 neuromuscular junctions and 600 gap junctions.


2019 ◽  
Vol 6 (8) ◽  
pp. 2591-2601 ◽  
Author(s):  
Man Qu ◽  
Yan Kong ◽  
Yujie Yuan ◽  
Dayong Wang

Our observations highlight the potential of nanoplastics in inducing damage on both development and functions of nervous system after long-term exposure.


2007 ◽  
Vol 3 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Maxwell G. Heiman ◽  
Shai Shaham

AbstractThe nematode Caenorhabditis elegans has a simple nervous system with glia restricted primarily to sensory organs. Some of the activities that would be provided by glia in the mammalian nervous system are either absent or provided by non-glial cell types in C. elegans, with only a select set of mammalian glial activities being similarly provided by specialized glial cells in this animal. These observations suggest that ancestral roles of glia may be to modulate neuronal morphology and neuronal sensitivity in sensory organs.


2008 ◽  
Vol 44 (6) ◽  
pp. 760-762
Author(s):  
T. B. Kalinnikova ◽  
A. Kh. Timoshenko ◽  
D. Yu. Galaktionova ◽  
T. M. Gainutdinov ◽  
M. Kh. Gainutdinov

2012 ◽  
Vol 120 (04) ◽  
pp. 182-183 ◽  
Author(s):  
M. Mendler ◽  
A. Schlotterer ◽  
M. Morcos ◽  
P. Nawroth

AbstractPathogenesis of late diabetic complications is influenced by a complex interplay of multiple exogenous and intrinsic factors. The well characterised nematode Caenorhabditis elegans is an ideal model to study causes of diabetic polyneuropathy because of its easily accessible nervous system. A repertoire of methods allows the assessment of both morphological and functional glucotoxic damages as well as reduction of lifespan, thereby helping to examine the influence of different pathways and mechanisms on neurodegeneration. Its insulin signalling system allows to directly visualize effects of insulin on high glucose induced neuronal damage, leading to a better understanding of diabetic polyneuropathy.


Sign in / Sign up

Export Citation Format

Share Document