scholarly journals Kainate Receptor-Dependent Short-Term Plasticity of Presynaptic Ca2+Influx at the Hippocampal Mossy Fiber Synapses

2002 ◽  
Vol 22 (21) ◽  
pp. 9237-9243 ◽  
Author(s):  
Haruyuki Kamiya ◽  
Seiji Ozawa ◽  
Toshiya Manabe
2007 ◽  
Vol 27 (15) ◽  
pp. 3987-3993 ◽  
Author(s):  
N. Rebola ◽  
S. Sachidhanandam ◽  
D. Perrais ◽  
R. A. Cunha ◽  
C. Mulle

2020 ◽  
Author(s):  
Sachin Makani ◽  
Stefano Lutzu ◽  
Pablo J. Lituma ◽  
David L. Hunt ◽  
Pablo E. Castillo

ABSTRACTIn the hippocampus, the excitatory synapse between dentate granule cell axons – or mossy fibers (MF) – and CA3 pyramidal cells (MF-CA3) expresses robust forms of short-term plasticity, such as frequency facilitation and post-tetanic potentiation (PTP). These forms of plasticity are due to increases in neurotransmitter release, and can be engaged when dentate granule cells fire in bursts (e.g. during exploratory behaviors) and bring CA3 pyramidal neurons above threshold. While frequency facilitation at this synapse is limited by endogenous activation of presynaptic metabotropic glutamate receptors, whether MF-PTP can be regulated in an activity-dependent manner is unknown. Here, using physiologically relevant patterns of mossy fiber stimulation in acute mouse hippocampal slices, we found that disrupting postsynaptic Ca2+ dynamics increases MF-PTP, strongly suggesting a form of Ca2+-dependent retrograde suppression of this form of plasticity. PTP suppression requires a few seconds of MF bursting activity and Ca2+ release from internal stores. Our findings raise the possibility that the powerful MF-CA3 synapse can negatively regulate its own strength not only during PTP-inducing activity typical of normal exploratory behaviors, but also during epileptic activity.SIGNIFICANCE STATEMENTThe powerful mossy fiber-CA3 synapse exhibits strong forms of plasticity that are engaged during location-specific exploration, when dentate granule cells fire in bursts. While this synapse is well-known for its presynaptically-expressed LTP and LTD, much less is known about the robust changes that occur on a shorter time scale. How such short-term plasticity is regulated, in particular, remains poorly understood. Unexpectedly, an in vivo-like pattern of presynaptic activity induced robust post-tetanic potentiation (PTP) only when the postsynaptic cell was loaded with a high concentration of Ca2+ buffer, indicating a form of Ca2+–dependent retrograde suppression of PTP. Such suppression may have profound implications for how environmental cues are encoded into neural assemblies, and for limiting network hyperexcitability during seizures.


2008 ◽  
Vol 28 (49) ◽  
pp. 13139-13149 ◽  
Author(s):  
R. Scott ◽  
T. Lalic ◽  
D. M. Kullmann ◽  
M. Capogna ◽  
D. A. Rusakov

2005 ◽  
Vol 93 (1) ◽  
pp. 146-156 ◽  
Author(s):  
Huifang Li ◽  
Anita E. Bandrowski ◽  
David A. Prince

The hypothesis that plastic changes in the efficacy of excitatory neurotransmission occur in areas of chronic cortical injury was tested by assessing short-term plasticity of evoked excitatory synaptic currents (EPSCs) in neurons of partially isolated neocortical islands (undercut cortex). Whole cell recordings were obtained from layer V pyramidal neurons of sensorimotor cortical slices prepared from P36–P43 control and undercut rats. AMPA/kainate receptor-mediated EPSCs elicited by stimuli delivered at 40 to 66.7 Hz exhibited more paired-pulse depression (PPD) in undercut cortex than control, the time constant of depression evoked by trains of 20- to 66.7-Hz stimuli was faster, and the steady-state amplitude of EPSCs reached after five to seven EPSCs was lower. An antagonist of the glutamate autoreceptor, group II mGluR, increased the steady-state amplitude of EPSCs from undercut but not control cortex, suggesting that activation of presynaptic receptors by released glutamate is more prominent in undercut cortex. In contrast, the GABAB receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid had no effect. Increasing [Ca2+]o from 2 to 4 mM increased PPD, with a smaller effect in neurons of the undercut. The I-V relationship of AMPA/kainate receptor-mediated EPSCs was close to linear in both control and undercut neurons, and spermine had no significant effect on the EPSCs, suggesting that decreases in postsynaptic glutamate receptors containing the GluR2 subunit were not involved in the alterations in short-term plasticity. Results are compatible with an increase in the probability of transmitter release at excitatory synapses in undercut cortex due to functional changes in presynaptic terminals.


Sign in / Sign up

Export Citation Format

Share Document