scholarly journals Strengthening of the Efferent Olivocochlear System Leads to Synaptic Dysfunction and Tonotopy Disruption of a Central Auditory Nucleus

2019 ◽  
Vol 39 (36) ◽  
pp. 7037-7048 ◽  
Author(s):  
Mariano N. Di Guilmi ◽  
Luis E. Boero ◽  
Valeria C. Castagna ◽  
Adrián Rodríguez-Contreras ◽  
Carolina Wedemeyer ◽  
...  
2018 ◽  
Author(s):  
Mariano N. Di Guilmi ◽  
Luis E. Boero ◽  
Valeria C. Castagna ◽  
Adrián Rodríguez-Contreras ◽  
Carolina Wedemeyer ◽  
...  

AbstractThe auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells (IHCs). In this work, we used an α9 cholinergic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9’T, L9’T) to understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) were smaller in L9’T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analysed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a medio-lateral axis. The topographic organization of MNTB physiological properties observed in WT mice was abolished in the L9’T mice. Additionally, electrophysiological recordings in slices evidenced MNTB synaptic alterations, which were further supported by morphological alterations. The present results suggest that the transient cochlear efferent innervation to IHCs during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the correct synaptic transmission at central auditory nuclei.Significance StatementCochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells is crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the central nervous system contacts hair cells during this developmental window. The function of this transient efferent innervation remains an open question. The present work shows that the genetic enhancement of efferent function disrupts the orderly topographic distribution at the medial nucleus of the trapezoid body level and causes severe synaptic dysfunction. Thus, the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.


Skull Base ◽  
2009 ◽  
Vol 19 (S 02) ◽  
Author(s):  
A. Komis ◽  
G. Stamatiou ◽  
J. Xenelis ◽  
E. Ferekydou ◽  
D. Kandiloros ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


2021 ◽  
Vol 22 (9) ◽  
pp. 4646
Author(s):  
Alexey A. Tinkov ◽  
Monica M. B. Paoliello ◽  
Aksana N. Mazilina ◽  
Anatoly V. Skalny ◽  
Airton C. Martins ◽  
...  

Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.


2021 ◽  
pp. 1-16
Author(s):  
Wei Wei ◽  
Yinghua Liu ◽  
Chunling Dai ◽  
Narjes Baazaoui ◽  
Yunn-Chyn Tung ◽  
...  

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Cognitive dysfunction and loss of neuronal plasticity are known to begin decades before the clinical diagnosis of the disease. The important influence of congenital genetic mutations on the early development of AD provides a novel opportunity to initiate treatment during early development to prevent the Alzheimer-like behavior and synaptic dysfunction. Objective: To explore strategies for early intervention to prevent Alzheimer’s disease. Methods: In the present study, we investigated the effect of treatment during early development with a ciliary neurotrophic factor (CNTF) derived peptidergic compound, P021 (Ac-DGGLAG-NH2) on cognitive function and synaptic plasticity in 3xTg-AD transgenic mouse model of AD. 3xTg-AD and genetic background-matched wild type female mice were treated from birth to postnatal day 120 with P021 in diet or as a control with vehicle diet, and cognitive function and molecular markers of neuroplasticity were evaluated. Results: P021 treatment during early development prevented cognitive impairment and increased expressions of pCREB and BDNF that activated downstream various signaling cascades such as PLC/PKC, MEK/ERK and PI3K/Akt, and ameliorated synaptic protein deficit in 4-month-old 3xTg-AD mice. Conclusion: These findings indicate that treatment with the neurotrophic peptide mimetic such as P021 during early development can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial AD and related tauopathies.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 686
Author(s):  
Maria Concetta Geloso ◽  
Nadia D’Ambrosi

Microglia, besides being able to react rapidly to a wide range of environmental changes, are also involved in shaping neuronal wiring. Indeed, they actively participate in the modulation of neuronal function by regulating the elimination (or “pruning”) of weaker synapses in both physiologic and pathologic processes. Mounting evidence supports their crucial role in early synaptic loss, which is emerging as a hallmark of several neurodegenerative diseases, including multiple sclerosis (MS) and its preclinical models. MS is an inflammatory, immune-mediated pathology of the white matter in which demyelinating lesions may cause secondary neuronal death. Nevertheless, primitive grey matter (GM) damage is emerging as an important contributor to patients’ long-term disability, since it has been associated with early and progressive cognitive decline (CD), which seriously worsens the quality of life of MS patients. Widespread synapse loss even in the absence of demyelination, axon degeneration and neuronal death has been demonstrated in different GM structures, thus raising the possibility that synaptic dysfunction could be an early and possibly independent event in the neurodegenerative process associated with MS. This review provides an overview of microglial-dependent synapse elimination in the neuroinflammatory process that underlies MS and its experimental models.


2021 ◽  
Vol 151 ◽  
pp. 105271
Author(s):  
Francesca Tozzi ◽  
Grazia Rutigliano ◽  
Marco Borsò ◽  
Chiara Falcicchia ◽  
Riccardo Zucchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document