scholarly journals  -Ca2+/Calmodulin-Dependent Protein Kinase II Contributes to the Developmental Programming of Anxiety in Serotonin Receptor 1A Knock-Out Mice

2008 ◽  
Vol 28 (24) ◽  
pp. 6250-6257 ◽  
Author(s):  
L. Lo Iacono ◽  
C. Gross
1996 ◽  
Vol 16 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M. Neal Waxham ◽  
James C. Grotta ◽  
Alcino J. Silva ◽  
Roger Strong ◽  
Jaroslaw Aronowski

Calcium/calmodulin-dependent protein kinase II (CaM-kinase) is a central enzyme in regulating neuronal processes. Imbalances in the activity and distribution of this enzyme have been reported following in vivo ischemia, and sustained decreases in activity correlate with subsequent neuronal death. In this report, mice that had been rendered deficient in the alpha subunit of CaM-kinase using gene knock-out technology were utilized to determine whether this enzyme is causally related to ischemic damage. Using a focal model of cerebral ischemia, we showed that homozygous knock-out mice lacking the alpha subunit exhibited an infarct volume almost twice that of wild-type litter mates. Heterozygous mice exhibited slightly less damage following ischemia than did homozygous mice, but infarct volumes remained significantly larger than those of wild-type litter mates. We conclude that reduced amounts of the alpha subunit of CaM-kinase predisposes neurons to increased damage following ischemia and that any perturbation that decreases the amount or activity of the enzyme will produce enhanced susceptibility to neuronal damage.


2019 ◽  
Vol 17 (3) ◽  
pp. 249-253
Author(s):  
Liu Chenglong ◽  
Liu Haihua ◽  
Zhang Fei ◽  
Zheng Jie ◽  
Wei Fang

Cancer-induced bone pain is a severe and complex pain caused by metastases to bone in cancer patients. The aim of this study was to investigate the analgesic effect of scutellarin on cancer-induced bone pain in rat models by intrathecal injection of Walker 256 carcinoma cells. Mechanical allodynia was determined by paw withdrawal threshold in response to mechanical stimulus, and thermal hyperalgesia was indicated by paw withdrawal latency in response to noxious thermal stimulus. The paw withdrawal threshold and paw withdrawal latencies were significantly decreased after inoculation of tumor cells, whereas administration of scutellarin significantly attenuated tumor cell inoculation-induced mechanical and heat hyperalgesia. Tumor cell inoculation-induced tumor growth was also significantly abrogated by scutellarin. Ca2+/calmodulin-dependent protein kinase II is a multifunctional kinase with up-regulated activity in bone pain models. The activation of Ca2+/calmodulin-dependent protein kinase II triggers phosphorylation of cAMP-response element binding protein. Scutellarin significantly reduced the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein in cancer-induced bone pain rats. Collectively, our study demonstrated that scutellarin attenuated tumor cell inoculation-induced bone pain by down-regulating the expression of phosphorylated-Ca2+/calmodulin-dependent protein kinase II and phosphorylated-cAMP-response element binding protein. The suppressive effect of scutellarin on phosphorylated-Ca2+/calmodulin-dependent protein kinase II/phosphorylated-cAMP-response element binding protein activation may serve as a novel therapeutic strategy for CIBP management.


1998 ◽  
Vol 67 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Wendy W. Waters ◽  
Pat L. Chen ◽  
Newell H. McArthur ◽  
Pete A. Moreno ◽  
Paul G. Harms

Sign in / Sign up

Export Citation Format

Share Document