Activation Energy of Formation for CaO · Al2O3and Energy for Diffusion of Ca-ions

1977 ◽  
Vol 106 (3-6) ◽  
pp. 323-325 ◽  
Author(s):  
Suketoshi Ito ◽  
Akihiro Nagai ◽  
Kazutaka Suzuki ◽  
Michio Inagaki
2003 ◽  
Vol 10 (04) ◽  
pp. 585-590 ◽  
Author(s):  
S. Azizian ◽  
H. Iloukhani

The formation of NH 2, ads and its further reactions with hydrogen and NO on the Pt(100) surface were previously studied by the methods of HREELS and TPR, in order to understand the role of amino species in the mechanism of the NO + H 2 reaction. In this work the method of unity bond index – quadratic exponential potential (UBI-QEP) has been employed to rationalize the experimental findings by calculating the energies associated with the envisaged routes of reactions. It is concluded that the activation energy of formation of NH 2, ads is higher than water production. The simplicity of recombinative desorption of N2 is due to the decrease of its activation energy because of the destabilizing effect of O ads and NO ads. The rate-determining step of explosive surface reaction in the saturated coadsorption layer of NH 2, ads and NOads is dissociation of NO ads. Autocatalytic acceleration of the explosive reactions is due to the decrease of activation energy of the rds by increasing the number adsorption vacant sites. H 2 O is produced via two different processes with different activation energies. NH 3 is produced via several paths.


Chemistry ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 937-946
Author(s):  
Sumudu Nimasha ◽  
Sashikesh Ganeshalingam ◽  
Navaratnarajah Kuganathan ◽  
Konstantinos Davazoglou ◽  
Alexander Chroneos

Wollastonite (CaSiO3) is an important mineral that is widely used in ceramics and polymer industries. Defect energetics, diffusion of Ca ions and a solution of dopants are studied using atomistic-scale simulation based on the classical pair potentials. The energetically favourable defect process is calculated to be the Ca-Si anti-site defect cluster in which both Ca and Si swap their atomic positions simultaneously. It is calculated that the Ca ion migrates in the ab plane with an activation energy of 1.59 eV, inferring its slow diffusion. Favourable isovalent dopants on the Ca and Si sites are Sr2+ and Ge4+, respectively. Subvalent doping by Al on the Si site is a favourable process to incorporate additional Ca in the form of interstitials in CaSiO3. This engineering strategy would increase the capacity of this material.


2019 ◽  
Vol 60 (3) ◽  
pp. 320-324 ◽  
Author(s):  
I. V. Vakulin ◽  
P. A. Pas’ko ◽  
R. F. Talipov ◽  
G. R. Talipova ◽  
O. Yu. Kupova

Author(s):  
William J. Dougherty

The regulation of secretion in exocrine and endocrine cells has long been of interest. Electron microscopic and other studies have demonstrated that secretory proteins synthesized on ribosomes are transported by the rough ER to the Golgi complex where they are concentrated into secretory granules. During active secretion, secretory granules fuse with the cell membrane, liberating and discharging their contents into the perivascular spaces. When secretory activity is suppressed in anterior pituitary cells, undischarged secretory granules may be degraded by lysosomes. In the parathyroid gland, evidence indicates that the level of blood Ca ions regulates both the production and release of parathormone. Thus, when serum Ca is low, synthesis and release of parathormone are both stimulated; when serum Ca is elevated, these processes are inhibited.


1964 ◽  
Vol 12 (02) ◽  
pp. 471-483 ◽  
Author(s):  
F Rodríguez-Erdmann

SummaryThe rôle of the clotting system in the pathogenesis of the generalized Shwartzman reaction (gSr) has been stressed in recent years. The clotting system is activated ubiquitously and as a result of it, fibrin is deposited intravascularly and a haemorrhagic diathesis develops. Evidence is presented herein, that endotoxin does not activate purified prothrombin, nor does endotoxin influence the convertion of prothrombin when it is activated in the presence of purified platelet-factor 3 (or caephalin) purified Ac-G (factor V) and Ca-ions.The trigger mechanism of the gSr also seems to be in the so-called prephase of clotting mechanism. Data are presented, which show that endotoxin activates the Hageman factor in vitro. The importance of this clotting factor and of platelet-factor 3 is discussed. Also the rôle played by the RES and cardiodynamic and vascular components are taken in consideration in the discussion.


2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1897-P
Author(s):  
HISASHI YOKOMIZO ◽  
ATSUSHI ISHIKADO ◽  
TAKANORI SHINJO ◽  
KYOUNGMIN PARK ◽  
YASUTAKA MAEDA ◽  
...  

Author(s):  
А. А. Горват ◽  
В. М. Кришеник ◽  
А. Е. Кріштофорій ◽  
В. В. Мінькович ◽  
О. А. Молнар

Sign in / Sign up

Export Citation Format

Share Document