Investigation of the Energetics of the Reactions of NH2 Species with Hydrogen and NO on the Pt(100) Surface by the Method of UBI-QEP

2003 ◽  
Vol 10 (04) ◽  
pp. 585-590 ◽  
Author(s):  
S. Azizian ◽  
H. Iloukhani

The formation of NH 2, ads and its further reactions with hydrogen and NO on the Pt(100) surface were previously studied by the methods of HREELS and TPR, in order to understand the role of amino species in the mechanism of the NO + H 2 reaction. In this work the method of unity bond index – quadratic exponential potential (UBI-QEP) has been employed to rationalize the experimental findings by calculating the energies associated with the envisaged routes of reactions. It is concluded that the activation energy of formation of NH 2, ads is higher than water production. The simplicity of recombinative desorption of N2 is due to the decrease of its activation energy because of the destabilizing effect of O ads and NO ads. The rate-determining step of explosive surface reaction in the saturated coadsorption layer of NH 2, ads and NOads is dissociation of NO ads. Autocatalytic acceleration of the explosive reactions is due to the decrease of activation energy of the rds by increasing the number adsorption vacant sites. H 2 O is produced via two different processes with different activation energies. NH 3 is produced via several paths.

2002 ◽  
Vol 715 ◽  
Author(s):  
H. L. Duan ◽  
G. A. Zaharias ◽  
Stacey F. Bent

AbstractThe choice of filament material has an effect on the decomposition of silane during the hot wire chemical vapor deposition (HW-CVD) of amorphous and microcrystalline silicon films. The Si radicals produced from W, Re, Mo and Ta filament materials have been probed by laserbased single photon ionization (SPI) as a function of hot wire temperature. The Si radical profiles are shown to demonstrate two distinct regimes: a regime below 1600°C-1800°C (depending on filament material) limited by surface reaction at the filament in which Si concentration increases monotonically; and a mass transfer limited regime above 1600°C-1800°C where Si intensity saturates. The apparent activation energy of Si radical production in the surface reaction regime from Ta (140-170 kcal/mol) is found to be close to the corresponding Si thermal desorption energy from a Ta surface, suggesting that the Si production is controlled by the desorption process from the bare metal. On the other hand, the Si activation energies from W and Re (30-60 kcal/mol) are lower than the related desorption energies, suggesting that other rate limiting reactions play a role for these materials. The apparent activation energy for the Mo surface (60-90 kcal/mol) is intermediate between the other metal values. In addition to the Si radical study, corresponding film deposition is detected in situ by multiple internal reflection infrared (MIR-IR) spectroscopy. The IR measurements have been used to estimate the growth rate of a-Si:H deposited on a Ge substrate. The results show similar activation energies for both the growth rate and the Si formation from a W filament, implying that Si radical production and subsequent film growth may be dominated by the same elementary reactions within the decomposition and film growth processes at low pressure.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shashidhar Bale ◽  
Syed Rahman

Glasses of various compositions belonging to the Bi2O3-B2O3-ZnO-Li2O quaternary system were prepared using melt quench technique. Dc electric measurements were done on the samples, and activation energies are determined. Arrhenius plots showed straight line behaviour. It is observed that the conductivity of the samples increased with temperature and also with Li2O content, whereas the activation energy decreased with Li2O content. The isothermal plots for constant ZnO and constant Bi2O3 glasses revealed that the conduction in these glasses is due to lithium ions only. The isothermal plots for constant lithium containing glasses varied nonlinearly with two maxima, which is attributed to mixed former effect. The variation is explained based on Anderson-Stuart model.


2019 ◽  
Author(s):  
Raghu Nath Dhital ◽  
keigo nomura ◽  
Yoshinori Sato ◽  
Setsiri Haesuwannakij ◽  
Masahiro Ehara ◽  
...  

Carbon-Fluorine (C-F) bonds are considered the most inert organic functionality and their selective transformation under mild conditions remains challenging. Herein, we report a highly active Pt-Pd nanoalloy as a robust catalyst for the transformation of C-F bonds into C-H bonds at low temperature, a reaction that often required harsh conditions. The alloying of Pt with Pd is crucial to activate C-F bond. The reaction profile kinetics revealed that the major source of hydrogen in the defluorinated product is the alcoholic proton of 2-propanol, and the rate-determining step is the reduction of the metal upon transfer of the <i>beta</i>-H from 2-propanol. DFT calculations elucidated that the key step is the selective oxidative addition of the O-H bond of 2-propanol to a Pd center prior to C-F bond activation at a Pt site, which crucially reduces the activation energy of the C-F bond. Therefore, both Pt and Pd work independently but synergistically to promote the overall reaction


2021 ◽  
pp. 000370282199121
Author(s):  
Yuki Nakaya ◽  
Satoru Nakashima ◽  
Takahiro Otsuka

The generation of carbon dioxide (CO2) from Nordic fulvic acid (FA) solution in the presence of goethite (α-FeOOH) was observed in FA–goethite interaction experiments at 25–80 ℃. CO2 generation processes observed by gas cell infrared (IR) spectroscopy indicated two steps: the zeroth order slower CO2 generation from FA solution commonly occurring in the heating experiments of the FA in the presence and absence of goethite (activation energy: 16–19 kJ mol–1), and the first order faster CO2 generation from FA solution with goethite (activation energy: 14 kJ mol–1). This CO2 generation from FA is possibly related to redox reactions between FA and goethite. In situ attenuated total reflection infrared (ATR-IR) spectroscopic measurements indicated rapid increases with time in IR bands due to COOH and COO– of FA on the goethite surface. These are considered to be due to adsorption of FA on the goethite surface possibly driven by electrostatic attraction between the positively charged goethite surface and negatively charged deprotonated carboxylates (COO–) in FA. Changes in concentration of the FA adsorbed on the goethite surface were well reproduced by the second order reaction model giving an activation energy around 13 kJ mol–1. This process was faster than the CO2 generation and was not its rate-determining step. The CO2 generation from FA solution with goethite is faster than the experimental thermal decoloration of stable structures of Nordic FA in our previous report possibly due to partial degradations of redox-sensitive labile structures in FA.


2021 ◽  
pp. 009524432110061
Author(s):  
Bo Yang ◽  
Balakrishnan Nagarajan ◽  
Pierre Mertiny

Polymers may absorb fluids from their surroundings via the natural phenomenon of swelling. Dimensional changes due to swelling can affect the function of polymer components, such as in the case of seals, microfluidic components and electromechanical sensors. An understanding of the swelling behavior of polymers and means for controlling it can improve the design of polymer components, for example, for the previously mentioned applications. Carbon-based fillers have risen in popularity to be used for the property enhancement of resulting polymer composites. The present investigation focuses on the effects of three carbon-based nano-fillers (graphene nano-platelets, carbon black, and graphene nano-scrolls) on the dimensional changes of polydimethylsiloxane composites due to swelling when immersed in certain organic solvents. For this study, a facile and expedient methodology comprised of optical measurements in conjunction with digital image analysis was developed as the primary experimental technique to quantify swelling dimensional changes of the prepared composites. Other experimental techniques assessed polymer cross-linking densities and elastic mechanical properties of the various materials. The study revealed that the addition of certain carbon-based nano-fillers increased the overall swelling of the composites. The extent of swelling further depended on the organic solvent in which the composites were immersed in. Experimental findings are contrasted with published models for swelling prediction, and the role of filler morphology on swelling behavior is discussed.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Author(s):  
Joseph W. Gregory ◽  
S. David Jackson

AbstractThe cascade reactions of phenylacetylene to ethylcyclohexane and 1-phenyl-1-propyne to propylcyclohexane were studied individually, under deuterium and competitively at 343 K and 3 barg pressure over a Rh/silica catalyst. Both systems gave similar activation energies for alkyne hydrogenation (56 ± 4 kJ mol−1 for phenylacetylene and 50 ± 4 kJ mol−1 for 1-phenyl-1-propyne). Over fresh catalyst the order of reactivity was styrene > phenylacetylene ≫ ethylbenzene. Whereas with the cascade hydrogenation starting with phenylacetylene, styrene hydrogenated much slower phenylacetylene even once all the phenylacetylene was hydrogenated. The activity of ethylbenzene was also reduced in the cascade reaction and after styrene hydrogenation. These reductions in rate were likely due to carbon laydown from phenylacetylene and styrene. Similar behavior was observed with the 1-phenyl-1-propyne cascade. Deuterium experiments revealed similar positive KIEs for phenylacetylene (2.6) and 1-phenyl-1-propyne (2.1). Ethylbenzene hydrogenation/deuteration gave a KIE of 1.6 obtained after styrene hydrogenation in contrast to the inverse KIE of 0.4 found with ethylbenzene hydrogenation/deuteration over a fresh catalyst, indicating a change in rate determining step. Competitive hydrogenation between phenylacetylene and styrene reduced the rate of phenylacetylene hydrogenation but increased selectivity to ethylbenzene suggesting a change in the flux of sub-surface hydrogen. In the competitive reaction between 1-phenyl-1-propyne and propylbenzene, the rate of hydrogenation of 1-phenyl-1-propyne was increased and the rate of alkene isomerization was decreased, likely due to an increase in the hydrogen flux for hydrogenation and a decrease in the hydrogen species active in methylstyrene isomerization.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4083
Author(s):  
Heming Jiang ◽  
Tian-Yu Sun

A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoguo Wang ◽  
Jian Qin ◽  
Hiromi Nagaumi ◽  
Ruirui Wu ◽  
Qiushu Li

The hot deformation behaviors of homogenized direct-chill (DC) casting 6061 aluminum alloys and Mn/Cr-containing aluminum alloys denoted as WQ1 were studied systematically by uniaxial compression tests at various deformation temperatures and strain rates. Hot deformation behavior of WQ1 alloy was remarkably changed compared to that of 6061 alloy with the presence of α-Al(MnCr)Si dispersoids. The hyperbolic-sine constitutive equation was employed to determine the materials constants and activation energies of both studied alloys. The evolution of the activation energies of two alloys was investigated on a revised Sellars’ constitutive equation. The processing maps and activation energy maps of both alloys were also constructed to reveal deformation stable domains and optimize deformation parameters, respectively. Under the influence of α dispersoids, WQ1 alloy presented a higher activation energy, around 40 kJ/mol greater than 6061 alloy’s at the same deformation conditions. Dynamic recrystallization (DRX) is main dynamic softening mechanism in safe processing domain of 6061 alloy, while dynamic recovery (DRV) was main dynamic softening mechanism in WQ1 alloy due to pinning effect of α-Al(MnCr)Si dispersoids. α dispersoids can not only resist DRX but also increase power required for deformation of WQ1 alloy. The microstructure analysis revealed that the flow instability was attributed to the void formation and intermetallic cracking during hot deformation of both alloys.


Sign in / Sign up

Export Citation Format

Share Document