Autowave Propagation in a Belousov-Zhabotinsky Medium with Immobilized Catalyst and Stationary Flow of Reagents

1991 ◽  
Vol 173 (Part_1) ◽  
pp. 79-85 ◽  
Author(s):  
K. I. Agladze ◽  
M. Braune ◽  
H. Engel ◽  
H. Linde ◽  
V. I. Krinsky
2011 ◽  
Vol 18 (3) ◽  
pp. 215-224 ◽  
Author(s):  
Irina A. Znamenskaya ◽  
T.A. Kuli-Zade ◽  
V. N. Kulikov ◽  
S. P. Perminov

2016 ◽  
Vol 11 (1) ◽  
pp. 53-59
Author(s):  
A.S. Topolnikov

The paper presents results of modeling of periodical regime of oil well for the purpose of monitoring and optimization of its operation. To describe non-stationary flow in the reservoir a planar-radial model of filtration is employed. The flow of multiphase flux in the well elements (casing, tubing, annulus) is described by 1D Navier-Stoks equations. The pump work is modelled by specification of its rate-head curve. To estimate the typical time duration of the processes in the well and in the reservoir a solution of a model problem for cylindrical tube is given. Through the examples a solution of a problem of optimization of periodical regime of oil wells is demonstrated. The comparison with field measurements is presented.


2021 ◽  
Author(s):  
Ruixiang Guo ◽  
Gang Wang ◽  
Wei Liu ◽  
Zibei Yao ◽  
Wei-Sheng Liu

Traditionally, the immobilized catalyst sacrifices a part of catalytic activity for its recyclability. To reproduce the catalytic activity of active specie, we construct a novel strategy called "adsorption-desorption-adsorption". Since the...


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
V. Vázquez-Báez ◽  
A. Rubio-Arellano ◽  
D. García-Toral ◽  
I. Rodríguez Mora

We present a model of groundwater dynamics under stationary flow and, governed by Darcy’s law of water motion through porous media, we apply it to study a 2D aquifer with water table of constant slope comprised of a homogeneous and isotropic media; the more realistic case of an homogeneous anisotropic soil is also considered. Taking into account some geophysical parameters we develop a computational routine, in the Finite Difference Method, which solves the resulting elliptic partial equation, both in a homogeneous isotropic and in a homogeneous anisotropic media. After calibration of the numerical model, this routine is used to begin a study of the Ayamonte-Huelva aquifer in Spain, a modest analysis of the system is given, and we compute the average discharge vector as well as its root mean square as a first predictive approximation of the flux in this system, providing us a signal of the location of best exploitation; long term goal is to develop a complete computational tool for the analysis of groundwater dynamics.


Author(s):  
B Eitzinger ◽  
G Ederer

AbstractThis study investigates by nonlinear constitutive equations the influence of tipping paper, cigarette paper, filter, and tobacco rod on the degree of filter ventilation and draw resistance. Starting from the laws of conservation, the path to the theory of fluid dynamics in porous media and Darcy's law is reviewed and, as an extension to Darcy's law, two different nonlinear pressure drop-flow relations are proposed. It is proven that these relations are valid constitutive equations and the partial differential equations for the stationary flow in an unlit cigarette covering anisotropic, inhomogeneous and nonlinear behaviour are derived. From these equations a system of ordinary differential equations for the one-dimensional flow in the cigarette is derived by averaging pressure and velocity over the cross section of the cigarette. By further integration, the concept of an electrical analog is reached and discussed in the light of nonlinear pressure drop-flow relations. By numerical calculations based on the system of ordinary differential equations, it is shown that the influence of nonlinearities cannot be neglected because variations in the degree of filter ventilation can reach up to 20% of its nominal value.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Dan Igra ◽  
Ozer Igra ◽  
Lazhar Houas ◽  
Georges Jourdan

Simulations of experimental results appearing in Jourdan et al. (2007, “Drag Coefficient of a Sphere in a Non-Stationary Flow: New Results,”Proc. R. Soc. London, Ser. A, 463, pp. 3323–3345) regarding acceleration of a sphere by the postshock flow were conducted in order to find the contribution of the various parameters affecting the sphere drag force. Based on the good agreement found between present simulations and experimental findings, it is concluded that the proposed simulation scheme could safely be used for evaluating the sphere’s motion in the postshock flow.


Author(s):  
E. Platacis ◽  
I. Bucenieks ◽  
F. Muktupavel ◽  
A. Shishko

Search of new energy sources draws the increasing attention to use for this purpose of reactors. In the Europe some years the program EUROATOM uniting scientific of the many countries for the decision of constructive problems at designing of fusion reactors operates. One of the main things in this program is the problem of liquid metals breeder blanket behaviour. Structural material of blanket should meet high requirements because of extreme operating conditions. Therefore the knowledge of the effect of metals flow velocity, temperatures and also a neutron irradiation and a magnetic field on the corrosion processes are necessary. At the moment the eutectic lead -lithium (Pb-17Li) is considered as the most suitable tritium breeder material [1–3]. In turn as a structural material have been tested both many austenitic and ferritic-martensitic steels [2–4]. As the optimum variant is considered steel EUROFER 97, which corrosion rate in liquid Pb-17Li eutectic is the least [3,4]. However, these results have been received without taking into account influence of a strong magnetic field. At the same time, this influence should be essential, as because of change of hydrodynamics of a liquid metal flow, and because of interaction of a magnetic field with a ferromagnetic steel. It has been shown in [5,6] that the magnetic field leads to increase of corrosion rate for austenitic (316L) and martensitic (1,4914) steels. Experimental data for EUROFER 97, and also a theoretical substantiation of the phenomenon are absent, that creates essential difficulties for forecasting working capacity of blanket construction. The aim of presented work were the theoretical and experimental investigations of magnetic field influence on the corrosion of EUROFER 97 steel exposed to flowing Pb-17 Li in specific designed loop.


Author(s):  
Bernhard Manhartsgruber

Simulation methods from simple lumped parameter approaches to complex computational fluid dynamics codes have become a widely used tool in the fluid power community. Certain tasks like the predicition of flow forces on the control spools in valves or the design of port plates in axial piston pumps are usually treated by the aid of numerical simulation. Like in many other cases, the underlying principle is the control of flow by orifices. The importance of orifice flow for hydraulic systems is reflected by the vast number of publications on various aspects of orifice flow in the fluid power literature. In lumped parameter simulations, the orifice equation giving the flow rate as a square root of the pressure drop is widely used even in transient cases where it is not clear whether the flow develops fast enough to justify the assumption of stationary flow. On the other end of the model complexity spectrum computational fluid dynamcis codes are used in the fluid power community. These very complex models require a high number of parameters for the tuning of turbulence models, wall models, and the like. The quality of the results heavily dependes on a good choice for these parameters. Additionally, the vast majority of turbulent flow simulations is done with the assumption of an incompressible fluid. Very often, the results from simulations deviate heavily from measurement results and only after parameter tuning a good match between model and simulation is achieved. This paper suggests the use of direct numerical simulations for simple and prototypical geometries in order to gain a better understanding for transient orifice flows lacking the fully developed flow assumed in traditional models.


Sign in / Sign up

Export Citation Format

Share Document