Determining Mosquito Distribution from Egg Data: The Role of the Citizen Scientist

2016 ◽  
Vol 78 (4) ◽  
pp. 317-322 ◽  
Author(s):  
Lee W. Cohnstaedt ◽  
Jamie Ladner ◽  
Leslie Rickert Campbell ◽  
Noah Busch ◽  
Roberto Barrera

Nationwide science classes, from elementary through secondary, are placing a larger emphasis on inquiry and authentic experiences. The opportunity for community members (students, teachers, or interested individuals) to collect real data and contribute to a research project is the definition of citizen science. Recent disease outbreaks of mosquito-transmitted pathogens (West Nile, eastern equine encephalitis, dengue, chikungunya, and Zika) demonstrate the need to educate children and adults about the public health risks posed by mosquitoes. This lesson plan has students determine mosquito species and subsequent disease risk around their house and in their community by collecting mosquito eggs and rearing a portion of them to adults. The students identify adult mosquitoes and associated health risks. Furthermore, students and teachers have the option to participate in a national mosquito-species-distribution study by submitting mosquito eggs and adults to the U.S. Department of Agriculture. The data generated by participant submissions will be available to all mosquito submitters, making each student and school part of a larger project. This lesson plan has three objectives beyond the citizen science experience: (1) clarify the individual's role in protecting individuals, communities, and pets from illness; (2) raise awareness of pathogens transmitted by mosquitoes; and (3) participate in a national program to gather mosquito distribution data. The lesson and the associated supplementary material (available at http://www.citizenscience.us) can be used for middle to high school classes, as well as Advanced Placement classes, because the materials and presentations can be easily modified to classroom needs.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Adam T. Craig ◽  
Nathan Kama ◽  
George Fafale ◽  
Hugo Bugoro

Abstract Background Recent arboviral disease outbreaks highlight the value a better understanding of the spread of disease-carrying mosquitoes across spatial-temporal scales can provide. Traditional surveillance tools are limited by jurisdictional boundaries, workforce constraints, logistics, and cost; factors that in low- and middle-income countries often conspire to undermine public health protection efforts. To overcome these, we undertake a pilot study designed to explore if citizen science provides a feasible strategy for arboviral vector surveillance in small developing Pacific island contexts. Methods We recruited, trained, and equipped community volunteers to trap and type mosquitos within their household settings, and to report count data to a central authority by short-message-service. Mosquito catches were independently assessed to measure participants’ mosquito identification accuracy. Other data were collected to measure the frequency and stability of reporting, and volunteers’ experiences. Results Participants collected data for 78.3% of the study period, and agreement between the volunteer citizen scientists’ and the reviewing entomologist’s mosquito identification was 94%. Opportunity to contribute to a project of social benefit, the chance to learn new skills, and the frequency of engagement with project staff were prime motivators for participation. Unstable electricity supply (required to run the trap’s fan), insufficient personal finances (to buy electricity and phone credit), and inconvenience were identified as barriers to sustained participation. Conclusions While there are challenges to address, our findings suggest that citizen science offers an opportunity to overcome the human resource constraints that conspire to limit health authorities’ capacity to monitor arboviral vectors across populations. We note that the success of citizen science-based surveillance is dependent on the appropriate selection of equipment and participants, and the quality of engagement and support provided.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Roger Eritja ◽  
Sarah Delacour-Estrella ◽  
Ignacio Ruiz-Arrondo ◽  
Mikel A. González ◽  
Carlos Barceló ◽  
...  

Abstract Background Active surveillance aimed at the early detection of invasive mosquito species is usually focused on seaports and airports as points of entry, and along road networks as dispersion paths. In a number of cases, however, the first detections of colonizing populations are made by citizens, either because the species has already moved beyond the implemented active surveillance sites or because there is no surveillance in place. This was the case of the first detection in 2018 of the Asian bush mosquito, Aedes japonicus, in Asturias (northern Spain) by the citizen science platform Mosquito Alert. Methods The collaboration between Mosquito Alert, the Ministry of Health, local authorities and academic researchers resulted in a multi-source surveillance combining active field sampling with broader temporal and spatial citizen-sourced data, resulting in a more flexible and efficient surveillance strategy. Results Between 2018 and 2020, the joint efforts of administrative bodies, academic teams and citizen-sourced data led to the discovery of this species in northern regions of Spain such as Cantabria and the Basque Country. This raised the estimated area of occurrence of Ae. japonicus from < 900 km2 in 2018 to > 7000 km2 in 2020. Conclusions This population cluster is geographically isolated from any other population in Europe, which raises questions about its origin, path of introduction and dispersal means, while also highlighting the need to enhance surveillance systems by closely combining crowd-sourced surveillance with public health and mosquito control agencies’ efforts, from local to continental scales. This multi-actor approach for surveillance (either passive and active) shows high potential efficiency in the surveillance of other invasive mosquito species, and specifically the major vector Aedes aegypti which is already present in some parts of Europe. Graphical abstract


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sunil Dhiman ◽  
Kavita Yadav ◽  
B. N. Acharya ◽  
Raj Kumar Ahirwar ◽  
D. Sukumaran

Abstract Background The direct toxicological impact of insecticides on vector mosquitoes has been well emphasized; however, behavioural responses such as excito-repellency and physical avoidance as a result of insecticide exposure have not been much studied. We have demonstrated the excito-repellency and behavioural avoidance in certain vector mosquito species on exposure to a slow-release insecticidal paint (SRIP) formulation in addition to direct toxicity. Methods A SRIP formulation developed by the Defence Research and Development Establishment, Gwalior, contains chlorpyriphos, deltamethrin and pyriproxyfen as active insecticides. Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti mosquitoes were used to study the excito-repellency response of the formulation. The experiments were performed in a specially designed dual-choice exposure and escape chamber made of transparent polymethyl methacrylate. For the experiments, the SRIP formulation was applied undiluted at a rate of 8 m2 per kg on 15 cm2 metallic surfaces. Mosquitoes were introduced into the exposure chamber, and observations of the movement of mosquitoes into the escape chamber through the exit portal were taken at 1-min intervals for up to 30 min. Results The evaluated formulation displayed strong excito-repellency against all three tested vector mosquito species. Results showed that the ET50 (escape time 50%) for Ae. aegypti, An. stephensi and Cx. quinquefasciatus was 20.9 min, 14.5 min and 17.9 min for contact exposure (CE) respectively. Altogether in CE, the escape rates were stronger in An. stephensi mosquitoes at different time intervals compared to Ae. aegypti and Cx. quinquefasciatus mosquitoes. The probit analysis revealed that the determined ET did not deviate from linearity for both non-contact exposure (NCE) and placebo exposure (PE) (χ2 ≤ 7.9; p = 1.0) for Ae. aegypti mosquitoes and for NCE (χ2 = 8.3; p = 1.0) and PE (χ2 = 1.7; p = 1.0) treatments in Cx. quinquefasciatus. Mortality (24 h) was found to be statistically higher (F = 6.4; p = 0.02) in An. stephensi for CE but did not vary for NCE (p ≥ 0.3) and PE (p = 0.6) treatments among the tested mosquito species. Survival probability response suggested that all the three tested species displayed similar survival responses for similar exposures (χ2 ≤ 2.3; p ≥ 0.1). Conclusion The study demonstrates the toxicity and strong behavioural avoidance in known vector mosquito species on exposure to an insecticide-based paint formulation. The combination of insecticides in the present formulation will broaden the overall impact spectrum for protecting users from mosquito bites. The efficacy data generated in the study provide crucial information on the effectiveness of the tested formulation and could be useful in reducing the transmission intensity and disease risk in endemic countries.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kufre Joseph Okop ◽  
Kathy Murphy ◽  
Estelle Victoria Lambert ◽  
Kiya Kedir ◽  
Hailemichael Getachew ◽  
...  

Abstract Background In sub-Saharan Africa (SSA), which experiences a disproportionately high cardiovascular disease (CVD) burden, population-based screening and prevention measures are hampered by low levels of knowledge about CVD and associated risk factors, and inaccurate perceptions of severity of risk. Methods This protocol describes the planned processes for implementing community-driven participatory research, using a citizen science method to explore CVD risk perceptions and to develop community-specific advocacy and prevention strategies in the rural and urban SSA settings. Multi-disciplinary research teams in four selected African countries will engage with and train community members living in rural and urban communities as citizen scientists to facilitate conceptualization, co-designing of research, data gathering, and co-creation of knowledge that can lead to a shared agenda to support collaborative participation in community-engaged science. The emphasis is on robust community engagement, using mobile technology to support data gathering, participatory learning, and co-creation of knowledge and disease prevention advocacy. Discussion Contextual processes applied and lessons learned in specific settings will support redefining or disassembling boundaries in participatory science to foster effective implementation of sustainable prevention intervention programmes in Low- and Middle-income countries.


2021 ◽  
Vol 18 (6) ◽  
pp. 7685-7710
Author(s):  
Yukun Tan ◽  
◽  
Durward Cator III ◽  
Martial Ndeffo-Mbah ◽  
Ulisses Braga-Neto ◽  
...  

<abstract><p>Mathematical models are widely recognized as an important tool for analyzing and understanding the dynamics of infectious disease outbreaks, predict their future trends, and evaluate public health intervention measures for disease control and elimination. We propose a novel stochastic metapopulation state-space model for COVID-19 transmission, which is based on a discrete-time spatio-temporal susceptible, exposed, infected, recovered, and deceased (SEIRD) model. The proposed framework allows the hidden SEIRD states and unknown transmission parameters to be estimated from noisy, incomplete time series of reported epidemiological data, by application of unscented Kalman filtering (UKF), maximum-likelihood adaptive filtering, and metaheuristic optimization. Experiments using both synthetic data and real data from the Fall 2020 COVID-19 wave in the state of Texas demonstrate the effectiveness of the proposed model.</p></abstract>


2018 ◽  
Vol 285 (1870) ◽  
pp. 20172265 ◽  
Author(s):  
Jamie M. Caldwell ◽  
Megan J. Donahue ◽  
C. Drew Harvell

Understanding how disease risk varies over time and across heterogeneous populations is critical for managing disease outbreaks, but this information is rarely known for wildlife diseases. Here, we demonstrate that variation in host and pathogen factors drive the direction, duration and intensity of a coral disease outbreak. We collected longitudinal health data for 200 coral colonies, and found that disease risk increased with host size and severity of diseased neighbours, and disease spread was highest among individuals between 5 and 20 m apart. Disease risk increased by 2% with every 10 cm increase in host size. Healthy colonies with severely diseased neighbours (greater than 75% affected tissue) were 1.6 times more likely to develop disease signs compared with colonies with moderately diseased neighbours (25–75% affected tissue). Force of infection ranged from 7 to 20 disease cases per 1000 colonies (mean = 15 cases per 1000 colonies). The effective reproductive ratio, or average number of secondary infections per infectious individual, ranged from 0.16 to 1.22. Probability of transmission depended strongly on proximity to diseased neighbours, which demonstrates that marine disease spread can be highly constrained within patch reefs.


Author(s):  
Philip M Armstrong ◽  
Theodore G Andreadis

Abstract In the current review, we examine the regional history, ecology, and epidemiology of eastern equine encephalitis virus (EEEV) to investigate the major drivers of disease outbreaks in the northeastern United States. EEEV was first recognized as a public health threat during an outbreak in eastern Massachusetts in 1938, but historical evidence for equine epizootics date back to the 1800s. Since then, sporadic disease outbreaks have reoccurred in the Northeast with increasing frequency and northward expansion of human cases during the last 20 yr. Culiseta melanura (Coquillett) (Diptera: Culicidae) serves as the main enzootic vector that drives EEEV transmission among wild birds, but this mosquito species will occasionally feed on mammals. Several species have been implicated as bridge vectors to horses and humans, with Coquilletstidia perturbans (Walker) as a leading suspect based on its opportunistic feeding behavior, vector competence, and high infection rates during recent disease outbreaks. A diversity of bird species are reservoir competent, exposed to EEEV, and serve as hosts for Cs. melanura, with a few species, including the wood thrush (Hlocichia mustelina) and the American robin (Turdus migratorius), contributing disproportionately to virus transmission based on available evidence. The major factors responsible for the sustained resurgence of EEEV are considered and may be linked to regional landscape and climate changes that support higher mosquito densities and more intense virus transmission.


Author(s):  
Ashley Heida ◽  
Alexis Mraz ◽  
Mark Hamilton ◽  
Mark Weir ◽  
Kerry A Hamilton

Legionella pneumophila are bacteria that when inhaled cause Legionnaires’ Disease (LD) and febrile illness Pontiac Fever. As of 2014, LD is the most frequent cause of waterborne disease outbreaks due...


2019 ◽  
Vol 41 (2) ◽  
pp. 186
Author(s):  
Candice J. Skelton ◽  
Amelia S. Cook ◽  
Peter West ◽  
Ricky-John Spencer ◽  
Julie M. Old

Citizen science websites and mobile applications are credited for their ability to engage members of the public in science and enhance scientific literacy, while operating as a cost-effective, geographically vast data-collection tool. Recruiting participants, tailoring online platforms to users’ needs and harnessing community values are key to creating a successful, sustainable citizen science project. However, few studies have conducted a detailed examination of the recruitment experience when trying to build an engaged and active citizen science audience to assess wildlife diseases in Australia. The present study aimed to determine the most effective methods to recruit and continue to engage citizens to use the tool called WomSAT (Wombat Survey and Analysis Tools). Various marketing techniques were employed to recruit participants. A survey was also disseminated to gain feedback on WomSAT and understand the driving factors behind participation. Participation in the WomSAT project was driven by a collective desire to help and learn about wombats. Preliminary distribution data collected by citizens suggest that WomSAT contains the necessary elements to enable it to be an important tool for monitoring wombats and the distribution of disease. Continuation of the WomSAT project will support scientific research while fostering conservation messages amongst the Australian community.


Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 173 ◽  
Author(s):  
Samuel Karungu ◽  
Evans Atoni ◽  
Joseph Ogalo ◽  
Caroline Mwaliko ◽  
Bernard Agwanda ◽  
...  

Kenya is among the most affected tropical countries with pathogen transmitting Culicidae vectors. For decades, insect vectors have contributed to the emergence and distribution of viral and parasitic pathogens. Outbreaks and diseases have a great impact on a country’s economy, as resources that would otherwise be used for developmental projects are redirected to curb hospitalization cases and manage outbreaks. Infected invasive mosquito species have been shown to increasingly cross both local and global boarders due to the presence of increased environmental changes, trade, and tourism. In Kenya, there have been several mosquito-borne disease outbreaks such as the recent outbreaks along the coast of Kenya, involving chikungunya and dengue. This certainly calls for the implementation of strategies aimed at strengthening integrated vector management programs. In this review, we look at mosquitoes of public health concern in Kenya, while highlighting the pathogens they have been linked with over the years and across various regions. In addition, the major strategies that have previously been used in mosquito control and what more could be done to reduce or combat the menace caused by these hematophagous vectors are presented.


Sign in / Sign up

Export Citation Format

Share Document