scholarly journals Relationship between specular returns in CryoSat-2 data, surface albedo, and Arctic summer minimum ice extent

Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
R. Kwok ◽  
G. F. Cunningham ◽  
T. W. K. Armitage

Specular (mirror-like) reflections in radar altimeter returns are sensitive indicators of flat open water in leads and melt ponds within the Arctic sea ice cover. Here we find increased specular and near-specular returns in CryoSat-2 waveforms as the sea ice cover transitions from a high albedo snow-covered surface to a lower albedo surface dominated by ponds from snow melt. During early melt, mid-May to late June, increases in fractional coverage of specular returns (FSR) show spatial correspondence with concurrent decreases in albedo. To examine the utility of FSR, we compared its efficacy with that of satellite-derived albedo in forecasting summer minimum ice extent (SMIE). Regression analysis of the area-averaged FSR (F—SR\documentclass[10pt]{article}\usepackage{wasysym}\usepackage[substack]{amsmath}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{eucal}\usepackage{mathrsfs}\usepackage{pmc}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\[{\bar F}_{SR}\]\end{document}) (2011–2017) shows that ~72% of SMIE variance can be explained by the dates when F—SR\documentclass[10pt]{article}\usepackage{wasysym}\usepackage[substack]{amsmath}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{eucal}\usepackage{mathrsfs}\usepackage{pmc}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\[{\bar F}_{SR}\]\end{document} climbs to 0.5 within two latitudinal bands covering 70–80°N and 80–90°N. The lag between the two crossing dates provides a measure of the relative rate of the poleward progression of melt. Approximately 93% of SMIE variance can be explained by the date when albedo drops to 0.6 in these same latitudinal bands. Standard errors for these regressions are 0.37 and 0.19 × 106 km2, respectively. Calculating the regression coefficients using only 2011–2016, the 2017 SMIE was forecast with residuals of 0.06 (2% of the total extent) and –0.17 × 106 km2 (4%). Using only 2011–2015 yielded residuals that are less than 0.5 × 106 km2 (~10%) in forecasts of both 2016 and 2017 SMIE, demonstrating the robustness of the regression models. Even though large-scale changes in albedo during summer melt is a characteristic feature of the ice surface, available albedo fields have not been directly used in SMIE forecasts. While this CryoSat-2 record is short, these results suggest that both FSR and albedo could be potentially useful for enhancing forecasts of SMIE.

2001 ◽  
Vol 33 ◽  
pp. 171-176 ◽  
Author(s):  
Donald K. Perovich ◽  
Jacqueline A. Richter-Menge ◽  
Walter B. Tucker

AbstractThe morphology of the Arctic sea-ice cover undergoes large changes over an annual cycle. These changes have a significant impact on the heat budget of the ice cover, primarily by affecting the distribution of the solar radiation absorbed in the ice-ocean system. In spring, the ice is snow-covered and ridges are the prominent features. The pack consists of large angular floes, with a small amount of open water contained primarily in linear leads. By the end of summer the ice cover has undergone a major transformation. The snow cover is gone, many of the ridges have been reduced to hummocks and the ice surface is mottled with melt ponds. One surface characteristic that changes little during the summer is the appearance of the bare ice, which remains white despite significant melting. The large floes have broken into a mosaic of smaller, rounded floes surrounded by a lace of open water. Interestingly, this break-up occurs during summer when the dynamic forcing and the internal ice stress are small During the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment we had an opportunity to observe the break-up process both on a small scale from the ice surface, and on a larger scale via aerial photographs. Floe break-up resulted in large part from thermal deterioration of the ice. The large floes of spring are riddled with cracks and leads that formed and froze during fall, winter and spring. These features melt open during summer, weakening the ice so that modest dynamic forcing can break apart the large floes into many fragments. Associated with this break-up is an increase in the number of floes, a decrease in the size of floes, an increase in floe perimeter and an increase in the area of open water.


2016 ◽  
Vol 29 (21) ◽  
pp. 7831-7849 ◽  
Author(s):  
Hans W. Chen ◽  
Fuqing Zhang ◽  
Richard B. Alley

Abstract The significance and robustness of the link between Arctic sea ice loss and changes in midlatitude weather patterns is investigated through a series of model simulations from the Community Atmosphere Model, version 5.3, with systematically perturbed sea ice cover in the Arctic. Using a large ensemble of 10 sea ice scenarios and 550 simulations, it is found that prescribed Arctic sea ice anomalies produce statistically significant changes for certain metrics of the midlatitude circulation but not for others. Furthermore, the significant midlatitude circulation changes do not scale linearly with the sea ice anomalies and are not present in all scenarios, indicating that the remote atmospheric response to reduced Arctic sea ice can be statistically significant under certain conditions but is generally nonrobust. Shifts in the Northern Hemisphere polar jet stream and changes in the meridional extent of upper-level large-scale waves due to the sea ice perturbations are generally small and not clearly distinguished from intrinsic variability. Reduced Arctic sea ice may favor a circulation pattern that resembles the negative phase of the Arctic Oscillation and may increase the risk of cold outbreaks in eastern Asia by almost 50%, but this response is found in only half of the scenarios with negative sea ice anomalies. In eastern North America the frequency of extreme cold events decreases almost linearly with decreasing sea ice cover. This study’s finding of frequent significant anomalies without a robust linear response suggests interactions between variability and persistence in the coupled system, which may contribute to the lack of convergence among studies of Arctic influences on midlatitude circulation.


2014 ◽  
Vol 8 (4) ◽  
pp. 1607-1622 ◽  
Author(s):  
R. Ricker ◽  
S. Hendricks ◽  
V. Helm ◽  
H. Skourup ◽  
M. Davidson

Abstract. In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite was launched in 2010 and is equipped with the Ku band synthetic aperture radar altimeter SIRAL (Synthetic Aperture Interferometric Radar Altimeter), which we use to derive sea-ice freeboard defined as the height of the ice surface above the sea level. Accurate CryoSat-2 range measurements over open water and the ice surface of the order of centimetres are necessary to achieve the required accuracy of the freeboard-to-thickness conversion. Besides uncertainties of the actual sea-surface height and limited knowledge of ice and snow properties, the composition of radar backscatter and therefore the interpretation of radar echoes is crucial. This has consequences in the selection of retracker algorithms which are used to track the main scattering horizon and assign a range estimate to each CryoSat-2 measurement. In this study we apply a retracker algorithm with thresholds of 40, 50 and 80% of the first maximum of radar echo power, spanning the range of values used in the current literature. By using the selected retrackers and additionally results from airborne validation measurements, we evaluate the uncertainties of sea-ice freeboard and higher-level products that arise from the choice of the retracker threshold only, independent of the uncertainties related to snow and ice properties. Our study shows that the choice of retracker thresholds does have a significant impact on magnitudes of estimates of sea-ice freeboard and thickness, but that the spatial distributions of these parameters are less affected. Specifically we find mean radar freeboard values of 0.121 m (0.265 m) for the 40% threshold, 0.086 m (0.203 m) for the 50% threshold and 0.024 m (0.092 m) for the 80% threshold, considering first-year ice (multiyear ice) in March 2013. We show that the main source of freeboard and thickness uncertainty results from the choice of the retracker and the unknown penetration of the radar pulse into the snow layer in conjunction with surface roughness effects. These uncertainties can cause a freeboard bias of roughly 0.06–0.12 m. Furthermore we obtain a significant rise of 0.02–0.15 m of freeboard from March 2013 to November 2013 in the area for multiyear sea ice north of Greenland and Canada. Since this is unlikely, it gives rise to the assumption that applying different retracker thresholds depending on seasonal properties of the snow load is necessary in the future.


1997 ◽  
Vol 25 ◽  
pp. 445-450 ◽  
Author(s):  
Donald K. Perovich ◽  
Walter B. Tucker

Understanding the interaction of solar radiation with the ice cover is critical in determining the heat and mass balance of the Arctic ice pack, and in assessing potential impacts due to climate change. Because of the importance of the ice-albedo feedback mechanism, information on the surface state of the ice cover is needed. Observations of the surface slate of sea ice were obtained from helicopter photography missions made during the 1994 Arctic Ocean Section cruise. Photographs from one flight, taken during the height of the melt season (31 July 1994) at 76° N, 172° W, were analyzed in detail. Bare ice covered 82% of the total area, melt ponds 12%, and open water 6%, There was considerable variability in these area fractions on scales < 1 km2. Sample areas >2 3 km2gave representative values of ice concentration and pond fraction. Melt ponds were numerous, with a number density of 1800 ponds km-2. The melt ponds had a mean area of 62 m2a median area of 14 m2, and a size distribution that was well lit by a cumulative lognormal distribution. While leads make up only a small portion of the total area, they are the source of virtually all of the solar energy input to the ocean.


2015 ◽  
Vol 9 (1) ◽  
pp. 255-268 ◽  
Author(s):  
D. V. Divine ◽  
M. A. Granskog ◽  
S. R. Hudson ◽  
C. A. Pedersen ◽  
T. I. Karlsen ◽  
...  

Abstract. The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70–90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.


2021 ◽  
Vol 15 (10) ◽  
pp. 4781-4805
Author(s):  
Alicia A. Dauginis ◽  
Laura C. Brown

Abstract. Arctic snow and ice cover are vital indicators of climate variability and change, yet while the Arctic shows overall warming and dramatic changes in snow and ice cover, the response of these high-latitude regions to recent climatic change varies regionally. Although previous studies have examined changing snow and ice separately, examining phenology changes across multiple components of the cryosphere together is important for understanding how these components and their response to climate forcing are interconnected. In this work, we examine recent changes in sea ice, lake ice, and snow together at the pan-Arctic scale using the Interactive Multisensor Snow and Ice Mapping System 24 km product from 1997–2019, with a more detailed regional examination from 2004–2019 using the 4 km product. We show overall that for sea ice, trends toward earlier open water (−7.7 d per decade, p<0.05) and later final freeze (10.6 d per decade, p<0.05) are evident. Trends toward earlier first snow-off (−4.9 d per decade, p<0.05), combined with trends toward earlier first snow-on (−2.8 d per decade, p<0.05), lead to almost no change in the length of the snow-free season, despite shifting earlier in the year. Sea ice-off, lake ice-off, and snow-off parameters were significantly correlated, with stronger correlations during the snow-off and ice-off season compared to the snow-on and ice-on season. Regionally, the Bering and Chukchi seas show the most pronounced response to warming, with the strongest trends identified toward earlier ice-off and later ice-on. This is consistent with earlier snow-off and lake ice-off and later snow-on and lake ice-on in west and southwest Alaska. In contrast to this, significant clustering between sea ice, lake ice, and snow-on trends in the eastern portion of the North American Arctic shows an earlier return of snow and ice. The marked regional variability in snow and ice phenology across the pan-Arctic highlights the complex relationships between snow and ice, as well as their response to climatic change, and warrants detailed monitoring to understand how different regions of the Arctic are responding to ongoing changes.


1997 ◽  
Vol 25 ◽  
pp. 445-450 ◽  
Author(s):  
Donald K. Perovich ◽  
Walter B. Tucker

Understanding the interaction of solar radiation with the ice cover is critical in determining the heat and mass balance of the Arctic ice pack, and in assessing potential impacts due to climate change. Because of the importance of the ice-albedo feedback mechanism, information on the surface state of the ice cover is needed. Observations of the surface slate of sea ice were obtained from helicopter photography missions made during the 1994 Arctic Ocean Section cruise. Photographs from one flight, taken during the height of the melt season (31 July 1994) at 76° N, 172° W, were analyzed in detail. Bare ice covered 82% of the total area, melt ponds 12%, and open water 6%, There was considerable variability in these area fractions on scales < 1 km2. Sample areas >2 3 km2 gave representative values of ice concentration and pond fraction. Melt ponds were numerous, with a number density of 1800 ponds km-2. The melt ponds had a mean area of 62 m2 a median area of 14 m2, and a size distribution that was well lit by a cumulative lognormal distribution. While leads make up only a small portion of the total area, they are the source of virtually all of the solar energy input to the ocean.


2021 ◽  
Author(s):  
Alicia A. Dauginis ◽  
Laura C. Brown

Abstract. Arctic snow and ice cover are vital indicators of climate variability and change, yet while the Arctic shows overall warming and dramatic changes in snow and ice cover, the response of these high-latitude regions to recent climatic change varies regionally. Although previous studies have examined changing snow and ice separately, examining phenology changes across multiple components of the cryosphere together is important for understanding how these components, and their response to climate forcing, are interconnected. In this work, we examine recent changes in sea ice, lake ice and snow together at the pan-Arctic scale using the Interactive Multisensor Snow and Ice Mapping System 24 km product from 1997–2019, with a more detailed regional examination from 2004–2019 using the 4 km product. We show overall that for sea ice, trends towards earlier open water (−7.7 d decade−1, p 


2016 ◽  
Vol 29 (8) ◽  
pp. 2869-2888 ◽  
Author(s):  
Srdjan Dobricic ◽  
Elisabetta Vignati ◽  
Simone Russo

Abstract The ongoing shrinkage of the Arctic sea ice cover is likely linked to the global temperature rise, the pronounced warming in the Arctic, and possibly weather anomalies in the midlatitudes. By evaluating independent components of global atmospheric energy anomalies in winters from 1980 to 2015, the study finds the link between the sea ice melting in the Arctic and the combination of only three well-known atmospheric oscillation patterns approximating observed spatial variations of near-surface temperature trends in winter. The three patterns are the North Atlantic Oscillation (NAO), Scandinavian blocking (SB), and El Niño–Southern Oscillation (ENSO). The first two are directly related to the ongoing sea ice cover shrinkage in the Barents Sea and the hemispheric increase of near-surface temperature. By independent dynamical processes they connect the sea ice melting and related atmospheric perturbations in the Arctic either with the negative phase of the NAO or the negative trend of atmospheric temperatures over the tropical Pacific. The study further shows that the ongoing sea ice melting may often imply the formation of large-scale circulation patterns bringing the recent trend of colder winters in densely populated areas like Europe and North America.


Sign in / Sign up

Export Citation Format

Share Document