Strategies for field collection of recalcitrant seeds and zygotic embryonic axes of the tropical tree, Trichilia dregeana Sond.

2004 ◽  
Vol 32 (3) ◽  
pp. 825-836 ◽  
Author(s):  
P. Berjak ◽  
J.I. Kioko ◽  
A. Makhathini ◽  
M.P. Watt
Author(s):  
W. E. Finch-Savage ◽  
G. A. F. Hendry ◽  
N. M. Atherton

SynopsisViability loss during desiccation in the recalcitrant seeds of Castanea saliva, Aesculus hippocastanum and Quercus robur was accompanied by increased lipid peroxidation and build up of a stable free radical within their embryonic axes. We argue that the accumulation of the free radical marks the termination of a series of destructive events following the initiation of oxidative attack during moisture stress in recalcitrant seeds.


1994 ◽  
Vol 4 (2) ◽  
pp. 257-261 ◽  
Author(s):  
J. R. Fu ◽  
J. P. Jin ◽  
Y. F. Peng ◽  
Q. H. Xia

AbstractSeeds were collected at weekly intervals from mid-maturation to the fully ripened stage. As seed development progressed, desiccation tolerance increased. Desiccation tolerance of C. lansium seeds was greatest at 67 days after anthesis (DAA), when they tolerated air drying for 9 days; 74 DAA was considered as physiological maturity, and their full viability was only maintained for up to 3 days of drying; overripened seeds (88 DAA) had the lowest desiccation tolerance. In L. chinensis, the desiccation sensitivity of seeds at 98 DAA (fully mature) was higher than that at 84 and 91 DAA (less mature); among the excised embryonic axes at different developmental stages, the less mature ones were less sensitive to desiccation than the fully mature ones; excised embryonic axes of the same stage were more tolerant of desiccation than whole seeds.


2004 ◽  
Vol 14 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Matthew I. Daws ◽  
Christiane S. Gaméné ◽  
Sheila M. Glidewell ◽  
Hugh W. Pritchard

For recalcitrant seeds, mortality curves of germination versus water content typically imply a wide range of desiccation sensitivities within a seed population. However, seed to seed differences in water content, during desiccation, may confound our interpretation of these mortality plots. Here, we illustrate this problem for two batches ofVitellaria paradoxa(Sapotaceae) seeds collected in 1996 and 2002. Whole seeds were desiccated to various target water contents (TWCs) using silica gel. During desiccation, smaller seeds in the population dried most rapidly. Consequently, there was a significant linear relationship between whole-seed water content and seed mass during the drying process. In addition, following desiccation to low TWCs, only the largest seeds in the population retained viability. Taken together, this suggests that the larger seeds survived, not as a consequence of great relative desiccation tolerance, but as a result of taking longer to desiccate. Subsequently, the critical water content (CWC) for viability loss was calculated, based on the assumptions that in the seed population whole-seed water content during desiccation was normally distributed and the smallest, and hence driest, seeds were killed first. Using this approach, the driest seeds in the population that were killed, at each TWC, were always below a single CWC (c. 20% and 26% in 1996 and 2002, respectively). In subsequent experiments the effect of seed size variation on the response to desiccation was confirmed by conducting desiccation screens on seeds sorted into two discrete size classes, i.e. the seed-lot heterogeneity in mass was reduced. Using this approach, the mortality curves had a steeper slope. Furthermore, data for 24 tropical tree species from the Database of Tropical Tree Seed Research (DABATTS) revealed that seed lots with less variability in mass had steeper mortality curves. Thus, taken together, the data suggest that, at least for whole seeds, the wide range of desiccation sensitivities typically inferred is an artefact of seed to seed variation in mass, and hence water contents, during drying.


Cryobiology ◽  
2014 ◽  
Vol 69 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Daniel Ballesteros ◽  
Sershen ◽  
Boby Varghese ◽  
Patricia Berjak ◽  
Norman W. Pammenter

Author(s):  
Chris O'Brien ◽  
Jayeni Hiti-Bandaralage ◽  
Raquel Folgado ◽  
Alice Hayward ◽  
Sean Lahmeyer ◽  
...  

Recent developments in the cryopreservation space has increased the trend in germplasm collections established through cryopreserved in vitro material. Cryopreservation of recalcitrant seeds through embryos and embryonic axes, is not uncommon. Tropical and sub-tropical plants are not acclimated to the cold season, therefore have no in-built natural resilience to the cold. Also, larger seeds from trees, such as avocado (Persea americana Mill.), mango (Mangifera indica) and durian (Durio zibethinus L.) are sensitive to desiccation, chilling and freezing stress, making them unsuitable for seed banking or cryopreservation. Alternatively, as seeds do not carry the same genetic make-up as the mother plant, especially in the context of woody rainforest species of which the cross-pollination is dominant; seed conservation does not serve the purpose of germplasm preservation. Other plant material and methods are needed for these plants to be successfully stored in liquid nitrogen (LN). One such method commonly used is shoot-tip cryopreservation which ensures the clonal fidelity of germplasm. There are many problems when using shoot tips of tropical recalcitrant-seeded species. These include: 1) the toxic effects of cryoprotective agents towards structural integrity; 2) optimum developmental stage for success and 3) oxidative stress associated with excision injury leading to necrosis triggering cell death and hindering regeneration for the shoot tips in culture. A pre-requisite for any cryopreservation system is the availability of an established tissue culture regeneration platform. This review will outline conservation strategies for avocado with special emphasis on attempts and improvements made in the cryopreservation space for storing this horticulturally important crop ‘avocado’ at ultra-low temperatures.


Sign in / Sign up

Export Citation Format

Share Document