scholarly journals COMPARISON OF SINUSOIDAL AND INVOLUTE SPUR GEARS BY MESHING CHARACTERISTICS

2019 ◽  
Vol 1 (57) ◽  
pp. 41-51
Author(s):  
P. Tkach ◽  
◽  
P. Nosko ◽  
O. Bashta ◽  
Yu. Tsybrii ◽  
...  
2021 ◽  
Vol 158 ◽  
pp. 104219
Author(s):  
Zhifang Zhao ◽  
Hongzheng Han ◽  
Pengfei Wang ◽  
Hui Ma ◽  
Shunhao Zhang ◽  
...  

2018 ◽  
Vol 49 (6) ◽  
pp. 661-668
Author(s):  
YiFan HUANGFU ◽  
KangKang CHEN ◽  
Hui MA ◽  
YanNing SUN ◽  
TianTang DUAN

Author(s):  
Pavlo Tkach ◽  
Pavlo Nosko ◽  
Oleksandr Bashta ◽  
Grygorii Boiko ◽  
Olha Herasymova

The article is devoted to the actual problem of increasing the performance indicators of machine gear drives. To solve this problem, in the article proposed to use a conchoidal engagement made with a shifting of the  reference profile and special contact conditions. A feature of the proposed engagement is that it is less sensitive to manufacturing and assembly errors compared to conventional conchoidal engagement. As a result of theoretical studies, the performance indicators of such an engagement were determined. This made it possible to determine the level of load during further experimental tests of new gears. Contact strength and meshing losses were selected as performance indicators subject to further experimental verification. The ratios of these indicators, calculated for conchoidal spur gears with convex-convex contact, made with a shifting of the reference profile, with similar involute ones, are theoretically determined. Comparative analysis of performance indicators was carried out for gears of involute and conchoidal engagement with the same parameters and shifting of the reference profile. It was found that for experimental conchoidal drives with shifting, the maximum load is 1.2 times higher than that of a similar involute drive with shifting, and the loss in engagement is 21% less. A rational area of application of the new gearing is machine drives for high power transmissions. Keywords: spur gears, conchoidal gearing, profile shift, convex-convex contact, meshing characteristics, teeth surface strength, gearing power loss


2018 ◽  
Vol 120 ◽  
pp. 149-158 ◽  
Author(s):  
Yanzhong Wang ◽  
Guanhua Song ◽  
Wentao Niu ◽  
Yanyan Chen

Author(s):  
Andrii Hnatov ◽  
Leonids Ribickis ◽  
Hanna Hnatova ◽  
Shchasiana Arhun ◽  
Nadezhda Kunicina ◽  
...  
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1496
Author(s):  
Svetislav Marković ◽  
Dušan Arsić ◽  
Ružica R. Nikolić ◽  
Vukić Lazić ◽  
Nada Ratković ◽  
...  

This paper presents the results of voluminous experimental investigations conducted to analyze the influence of the welding procedure on the performance of regenerated gears. Cylindrical spur gears were tested, both newly manufactured and regenerated, in two fundamentally different ways: by hard facing (surfacing) with the “hard” filler metal (DUR 600-IG) and with the “soft” filler metal (EVB2CrMo) with subsequent cementation and quenching. The regeneration procedures were defined and executed, while, subsequently, the microstructure and microhardness of the hard-faced layers were established and measured, followed by checking the durability of the hard-faced teeth flanks. Finally, techno-economic analysis was performed to establish the rationality of the conducted regenerations, i.e., the costs of regenerated and newly manufactured teeth were compared. Based on the results of the conducted investigations, it was possible to establish the influence of the welding type on the performance characteristics (primarily the service life) of the regenerated gears. For individual reparatory hard facing, the procedure with the “hard” filler metal exhibited better characteristics, while for batch reparation of numerous damaged gears, the reparation with the “soft” filler metal, followed by cementation and heat treatment, might be more convenient.


Measurement ◽  
2021 ◽  
Vol 172 ◽  
pp. 108950
Author(s):  
Onur Can Kalay ◽  
Oğuz Doğan ◽  
Tufan Gürkan Yılmaz ◽  
Celalettin Yüce ◽  
Fatih Karpat

Sign in / Sign up

Export Citation Format

Share Document