reference profile
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 15)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Pavlo Tkach ◽  
Pavlo Nosko ◽  
Oleksandr Bashta ◽  
Grygorii Boiko ◽  
Olha Herasymova

The article is devoted to the actual problem of increasing the performance indicators of machine gear drives. To solve this problem, in the article proposed to use a conchoidal engagement made with a shifting of the  reference profile and special contact conditions. A feature of the proposed engagement is that it is less sensitive to manufacturing and assembly errors compared to conventional conchoidal engagement. As a result of theoretical studies, the performance indicators of such an engagement were determined. This made it possible to determine the level of load during further experimental tests of new gears. Contact strength and meshing losses were selected as performance indicators subject to further experimental verification. The ratios of these indicators, calculated for conchoidal spur gears with convex-convex contact, made with a shifting of the reference profile, with similar involute ones, are theoretically determined. Comparative analysis of performance indicators was carried out for gears of involute and conchoidal engagement with the same parameters and shifting of the reference profile. It was found that for experimental conchoidal drives with shifting, the maximum load is 1.2 times higher than that of a similar involute drive with shifting, and the loss in engagement is 21% less. A rational area of application of the new gearing is machine drives for high power transmissions. Keywords: spur gears, conchoidal gearing, profile shift, convex-convex contact, meshing characteristics, teeth surface strength, gearing power loss


2021 ◽  
Vol 12 ◽  
Author(s):  
Haiying Wang ◽  
Mingxue Xu ◽  
Xiaochun Xie ◽  
Yuan Dong ◽  
Weichen Wang

Academic adjustment is a principal determining factor of undergraduate students’ academic achievement and success. However, studies pay little attention to freshmen’s antecedent variables of academic adjustment. This study aimed to examine the mechanisms underlying the relationship between achievement goal orientations and academic adjustment in freshmen using variable- and person-centered approaches. A sample of 578 freshmen (aged 18.29±1.04years, 58.5% female) completed questionnaires on achievement goal orientations, learning engagement, and academic adjustment. Latent profile analysis of achievement goal orientations revealed four groups: low-motivation (11.1%), approach-oriented (9.5%), average (52.8%), and multiple (26.6%). In the mediating analysis, results of the variable-centered approach showed that learning engagement mediated the effects of the mastery-approach and performance-avoidance goals on academic adjustment. For the person-centered approach, we selected the average type as the reference profile, and the analysis revealed that compared with the reference profile, learning engagement partially mediated the link between the approach-oriented profile and academic adjustment. The current study highlights the important role that achievement goal orientations and learning engagement play in academic adjustment. We discuss the implications and limitations of the findings.


2021 ◽  
Vol 36 (4) ◽  
pp. 239-253
Author(s):  
Vladimir V. Shashkin

Abstract The stability of implicit semi-Lagrangian schemes for time-integration of the non-hydrostatic atmosphere dynamics equations is analyzed in the present paper. The main reason for the instability of the considered class of schemes is the semi-Lagrangian advection of stratified thermodynamic variables coupled to the fixed point iteration method used to solve the implicit in time upstream trajectory computation problem. We identify two types of unstable modes and obtain stability conditions in terms of the scheme parameters. Stabilization of sound modes requires the use of a pressure reference profile and time off-centering. Gravity waves are stable only for an even number of fixed point method iterations. The maximum time step is determined by inverse buoyancy frequency in the case when the reference profile of the potential temperature is not used. Generally, applying time off-centering and reference profile to pressure variable is necessary for stability. Using reference profile for potential temperature and an even number of the iterations allows one to significantly increase the maximum time-step value.


2021 ◽  
Author(s):  
Sramana Neogi ◽  
Martin Singh

<p>The interaction between large-scale tropical circulations and moist convection has been the focus of a number of studies. However, projections of how the large-scale tropical circulation may change under global warming remain uncertain because our understanding of this interaction is still limited.</p><p>Here, we use a cloud-resolving model (CRM) coupled with a supra-domain scale (SDS) parameterisation of the large-scale circulation to investigate how tropical circulations driven by sea-surface temperature (SST) gradients change in a future warmer climate. Two popular SDS parameterisation schemes are compared; the weak temperature gradient approximation and the damped-gravity-wave approximation. In both cases, the large-scale vertical velocity is related to the deviation of the simulated density profile from a reference profile taken from the same model run to radiative-convective equilibrium.</p><p>We examine how the large-scale vertical velocity profile varies with surface temperature for fixed background profile (relative SST) as well as how it varies with the surface temperature of the reference profile (background SST). The domain mean vertical velocity appears to be very top-heavy with the maximum vertical velocity becoming stronger at warmer surface temperatures. The results are understood using a simple model for the thermodynamic structure of a convecting atmosphere based on an entraining plume. The model uses a fixed entrainment rate and the relative humidity from the cloud-resolving model to predict a temperature profile. The vertical velocities calculated from these predicted temperature profiles is similar to the vertical velocity structures and their behaviour in a warmer climate that we see in the CRM simulations. The results provide insight into large scale vertical velocity structures simulated by SDS parameterisation schemes, providing a stepping stone to understanding the factors driving changes to the large-scale tropical circulation in a future warmer climate.</p>


2021 ◽  
Vol 413 (8) ◽  
pp. 2103-2111
Author(s):  
Zuzana Zelinkova ◽  
Thomas Wenzl

AbstractThis paper describes an analytical method that supports the implementation of articles 9 and 10 of the WHO Framework Convention on Tobacco Control (FCTC) regarding the provisions on the reduction of the palatability and attractiveness of tobacco products regarding flavour ingredients. This study aimed to develop a screening method to identify cigarettes that may have a characterising flavour to support the implementation of the ban of characterising flavours of tobacco products, as laid down in the US and EU law. An analytical method combining direct thermal desorption and GC–QTOF MS was developed for acquiring the profile of volatile and semi-volatile substances in tobacco. A database of flavour additives was created comprising 133 compounds. A group of cigarettes without a declared characterising flavour was used to establish a reference profile of flavouring chemicals commonly present in tobacco products. A reference profile was modelled both by the means of principal component analysis (PCA) and based on the calculation of threshold values specified as 95th percentile of measured compounds’ relative responses. Cigarettes and roll-your-own tobacco labelled as flavoured were analysed to evaluate the discrimination power of the method. A constructed model of the reference cigarettes allowed the differentiation of the flavoured tobacco products from the reference group. The method allows drawing conclusions on the chemical profiles of flavour constituents of tobacco products at even sensorial subliminal concentration levels and is suitable for both the initial screening of products on the market for characterising flavours and for confirmatory purposes after sensory analysis. Graphical abstract


2020 ◽  
pp. 146808742093124
Author(s):  
Hidemasa Kosaka ◽  
Tomoyuki Akita ◽  
Shigeaki Goto ◽  
Yoshihiro Hotta

A free piston engine linear generator, which has the potential of the compact physique, high brake efficiency and high flexibility for fuel, has been developed. The developed free piston engine linear generator consists of a two-stroke combustion unit, an air-bounce chamber and a linear generator. The key technologies to realize the continuous operation are the control method and lubricating and cooling strategies. The proposed structure is featured as a piston shape with two different diameters coaxially, called a “W-shape” piston, which has an empty space inside for the oil cooling path. The performance of the structure is evaluated by a one-dimensional cycle simulation. The result indicates the possible output power of 10 kW and thermal efficiency of 42% using premixed charge compression ignition combustion strategy. The control method is another challenge of the free piston engine linear generator. This work proposes two strategies of the position feedback control method and the resonant pendulum type control method. The first method has the function of the feedback loops for the piston position and velocity so that the piston motion follows the reference profile calculated in advance. The experimental results show the limited range of operation because the fixed profile does not absorb the deviation of the piston motion due to the combustion deviation. The second method is based on the speed control without a fixed reference profile of the piston motion. The experimental result shows the robustness to the change in operating parameters such as ignition position, amount of fuel and desired power output.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Wang ◽  
Robert P. Sebra ◽  
John P. Sfakianos ◽  
Kimaada Allette ◽  
Wenhui Wang ◽  
...  

2020 ◽  
Vol 221 (2) ◽  
pp. 1264-1280
Author(s):  
Rene Gassmöller ◽  
Juliane Dannberg ◽  
Wolfgang Bangerth ◽  
Timo Heister ◽  
Robert Myhill

SUMMARY Mantle convection and long-term lithosphere dynamics in the Earth and other planets can be treated as the slow deformation of a highly viscous fluid, and as such can be described using the compressible Navier–Stokes equations. Since on Earth-sized planets the influence of compressibility is not a dominant effect, density deviations from a reference profile are at most on the order of a few percent and using the full governing equations poses numerical challenges, most modelling studies have simplified the governing equations. Common approximations assume a temporally constant, but depth-dependent reference profile for the density (the anelastic liquid approximation), or drop compressibility altogether and use a constant reference density (the Boussinesq approximation). In most previous studies of mantle convection and crustal dynamics, one can assume that the error introduced by these approximations was small compared to the errors that resulted from poorly constrained material behaviour and limited numerical accuracy. However, as model parametrizations have become more realistic, and model resolution has improved, this may no longer be the case and the error due to using simplified conservation equations might no longer be negligible: while such approximations may be reasonable for models of mantle plumes or slabs traversing the whole mantle, they may be unsatisfactory for layered materials experiencing phase transitions or materials undergoing significant heating or cooling. For example, at boundary layers or close to dynamically changing density gradients, the error arising from the use of the aforementioned compressibility approximations can be the dominant error source, and common approximations may fail to capture the physical behaviour of interest. In this paper, we discuss new formulations of the continuity equation that include dynamic density variations due to temperature, pressure and composition without using a reference profile for the density. We quantify the improvement in accuracy relative to existing formulations in a number of benchmark models and evaluate for which practical applications these effects are important. Finally, we consider numerical aspects of the new formulations. We implement and test these formulations in the freely available community software aspect, and use this code for our numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document