scholarly journals Passive Control of Nanoparticles on MHD Jeffrey Nanofluid past a Convectively Heated Moving Plate with Thermal Radiation

Author(s):  
S. Mohd Zokri ◽  
N. S. Arifin ◽  
A. R. Mohd Kasim ◽  
Mohd Zuki Salleh

A theoretical study is conducted to investigate the thermal radiation effect on boundary layer flow of magneto-hydrodynamic (MHD) Jeffrey nanofluid across a moving plate with convective boundary condition. More physically acceptable model of passively controlled wall nanoparticle concentration is executed. Similarity transformation variables are utilised to transform the partial differential equations to non-linear ordinary differential equations. An effective Runge-Kutta Fehlberg Fourth-Fifth order (RKF45) method is employed to solve the obtained equations numerically. Validation of the present results has been made with the existing studies under the limiting cases and the results are found to be in a good agreement. Numerical solutions for several pertinent parameters are provided graphically over specified distributions. The results indicate that the temperature profile intensifies attributable to the increasing thermal radiation parameter. Besides, the increase of Brownian motion parameter pronounces negligible effect on the temperature profile, whereas nanoparticle concentration profile declines. Moreover, increment in the thermophoresis diffusion parameter results in the escalation of the temperature and nanoparticle concentration profiles.

2018 ◽  
Vol 7 (4.10) ◽  
pp. 417
Author(s):  
K. Jagan ◽  
S. Sivasankaran ◽  
M. Bhuvaneswari ◽  
S. Rajan

The objective of this paper is to analyze the effect of thermal radiation on MHD mixed convection flow of a micropolar nanoliquid   towards a non-linear stretching surface with convective boundary condition. The governing equations are converted into non-linear    ordinary differential equations by using suitable similarity transformations. The homotopy analysis method is used for solving the non-linear ordinary differential equations. The temperature profiles increase due to increase in thermal radiation parameter. The microrotation   profile increases when boundary parameter is increased. Also, the skin friction coefficient and local Nusselt are plotted for various    parameters.  


2018 ◽  
Vol 189 ◽  
pp. 02005
Author(s):  
S M Zokri ◽  
N S Arifin ◽  
A R M Kasim ◽  
N F Mohammad ◽  
M Z Salleh

The flow and heat transfer of magnetohydrodynamic (MHD) Jeffrey nanofluid induced by a moving plate is examined numerically. The formulation is established by using the revised model of passively controlled boundary layer instead of actively, which is more realistic physically. The similarity transformation variables are used to transform the partial differential equations into a set of ordinary differential equations before solving it via numerical approach called as the Runge-Kutta Fehlberg method. Graphical representation of the physical parameters over the temperature profile is deliberated. Temperature profile is slowed down due to the parameters of Deborah number and plate velocity while the reverse trend is observed for thermophoresis diffusion parameter. The Brownian motion has shown an insignificant outcome on the temperature profile. A comparison with the earlier publication has been conducted and a perfect agreement between the data is detected.


Author(s):  
Euwing Low ◽  
Syahira Mansur ◽  
Yaan Yee Choy ◽  
Eugene Low

This paper considers the flow and heat transfer characteristics of dusty nanofluid over a moving plate in the presence of magnetohydrodynamic (MHD) with convective boundary condition. Two types of nanofluid namely CuO-water and Al2O3-water permeated with dust particles are considered. The governing partial differential equations are converted into a system of non-linear ordinary differential equations using similarity transformation, then the non-linear ordinary differential equations are solved using shooting method with fourth-fifth order Runge-Kutta Fehlberg method (RKF45). The influence of non-dimensional governing parameters such as velocity ratio parameter, magnetic field parameter, volume fraction of the nanoparticle, volume fraction of the dust particle, mass concentration of the dust particle, fluid particle interaction parameter for velocity, fluid particle interaction parameter for temperature and Biot number on the velocity and temperature profiles for fluid and dust phases of CuO-water and Al2O3-water dusty nanofluids are discussed and presented through graphs. The skin friction coefficient and Nusselt number are discussed and presented in tabular form.


2021 ◽  
Author(s):  
Muhammad Yasir ◽  
Masood Khan ◽  
Awais Ahmed ◽  
Malik Zaka Ullah

Abstract In this work, an analysis is presented for the unsteady axisymmetric flow of Oldroyd-B nanofluid generated by an impermeable stretching cylinder with heat and mass transport under the influence of heat generation/absorption, thermal radiation and first-order chemical reaction. Additionally, thermal and solutal performances of nanofluid are studied using an interpretation of the well-known Buongiorno's model, which helps us to determine the attractive characteristics of Brownian motion and thermophoretic diffusion. Firstly, the governing unsteady boundary layer equation's (PDEs) are established and then converted into highly non-linear ordinary differential equations (ODEs) by using the suitable similarity transformations. For the governing non-linear ordinary differential equations, numerical integration in domain [0, ∞) is carried out using the BVP Midrich scheme in Maple software. For the velocity, temperature and concentration distributions, reliable results are prepared for different physical flow constraints. According to the results, for increasing values of Deborah numbers, the temperature and concentration distribution are higher in terms of relaxation time while these are decline in terms of retardation time. Moreover, thermal radiation and heat generation/absorption are increased the temperature distribution and corresponding boundary layer thickness. With previously stated numerical values, the acquired solutions have an excellent accuracy.


2019 ◽  
Vol 26 ◽  
pp. 62-83
Author(s):  
Tunde Abdulkadir Yusuf ◽  
Jacob Abiodun Gbadeyan

In this study the effect of entropy generation on two dimensional magnetohydrodynamic (MHD) flow of a Maxwell fluid over an inclined stretching sheet embedded in a non-Darcian porous medium with velocity slip and convective boundary condition is investigated. Darcy-Forchheimer based model was employed to describe the flow in the porous medium. The non-linear thermal radiation is also taken into account. Similarity transformation is used to convert the non-linear partial differential equations to a system of non-linear ordinary differential equations. The resulting transformed equations are then solved using the Homotopy analysis method (HAM). Influence of various physical parameters on the dimensionless velocity profile, temperature profile and entropy generation are shown graphically and discussed in detail while the effects of these physical parameters on velocity gradient and temperature gradient are aided with the help of Table. Furthermore, comparison of some limiting cases of this model was made with existing results. The results obtained are found to be in good agreement with previously published results. Moreover, increase in local inertial coefficient parameter is found to decrease the entropy generation rate.


Author(s):  
K. Kumaraswamy Naidu ◽  
D. Harish Babu ◽  
S. Harinath Reddy ◽  
P. V. Satya Narayana

Abstract In this study, the impact of thermal radiation and partial slip on magnetohydrodynamic flow of the Jeffrey nanofluid comprising motile gyrotactic microorganisms via vertical stretching surface is analyzed. The governing partial differential equations are reformed to a system of coupled ordinary differential equations by utilizing the similarity transformations. The transformed equations are of order four, which are complex to solve analytically and hence, the coupled system is solved computationally by using the shooting technique along the Runge–Kutta integrated scheme. The ramifications of different thermophysical parameters on the density of gyrotactic microorganisms, Jeffrey nanofluid velocity, nanoparticles concentration, temperature, Sherwood number, and Nusselt number are illustrated graphically. Comparing this study with the results already published favors the validity of this study. It is established that the Nusselt number is boosted on enhancing the thermal radiation parameter, and the reverse trend has been observed on increasing the Richardson number, whereas the gyrotactic microorganisms density is more in case of viscous nanofluid compared to the Jeffrey nanofluid.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 207 ◽  
Author(s):  
Muhammad Jawad ◽  
Zahir Shah ◽  
Saeed Islam ◽  
Jihen Majdoubi ◽  
I. Tlili ◽  
...  

The aim of this article is to study time dependent rotating single-wall electrically conducting carbon nanotubes with aqueous suspensions under the influence of nonlinear thermal radiation in a permeable medium. The impact of viscous dissipation is taken into account. The basic governing equations, which are in the form of partial differential equations (PDEs), are transformed to a set of ordinary differential equations (ODEs) suitable for transformations. The homotopy analysis method (HAM) is applied for the solution. The effect of numerous parameters on the temperature and velocity fields is explanation by graphs. Furthermore, the action of significant parameters on the mass transportation and the rates of fiction factor are determined and discussed by plots in detail. The boundary layer thickness was reduced by a greater rotation rate parameter in our established simulations. Moreover, velocity and temperature profiles decreased with increases of the unsteadiness parameter. The action of radiation phenomena acts as a source of energy to the fluid system. For a greater rotation parameter value, the thickness of the thermal boundary layer decreases. The unsteadiness parameter rises with velocity and the temperature profile decreases. Higher value of augments the strength of frictional force within a liquid motion. For greater and ; the heat transfer rate rises. Temperature profile reduces by rising values of .


2013 ◽  
Vol 18 (2) ◽  
pp. 447-459 ◽  
Author(s):  
S. Mukhopadhyay ◽  
R.S.R Gorla

An axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder is presented. Velocity slip is considered instead of the no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. It is found that the velocity decreases with increasing the slip parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to those for a flat plate.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Kh. Abdul Maleque

A local similarity solution of unsteady MHD natural convection heat and mass transfer boundary layer flow past a flat porous plate within the presence of thermal radiation is investigated. The effects of exothermic and endothermic chemical reactions with Arrhenius activation energy on the velocity, temperature, and concentration are also studied in this paper. The governing partial differential equations are reduced to ordinary differential equations by introducing locally similarity transformation (Maleque (2010)). Numerical solutions to the reduced nonlinear similarity equations are then obtained by adopting Runge-Kutta and shooting methods using the Nachtsheim-Swigert iteration technique. The results of the numerical solution are obtained for both steady and unsteady cases then presented graphically in the form of velocity, temperature, and concentration profiles. Comparison has been made for steady flow () and shows excellent agreement with Bestman (1990), hence encouragement for the use of the present computations.


Sign in / Sign up

Export Citation Format

Share Document