scholarly journals Self Tuning PID Control of Antilock Braking System using Electronic Wedge Brake

Author(s):  
SHARIL IZWAN HARIS ◽  
Fauzi Ahmad ◽  
Mohd Hanif Che Hassan ◽  
Ahmad Kamal Mat Yamin ◽  
Nur Rashid Mat Nuri

This paper describes the design of an antilock braking system (ABS) control for a passenger vehicle that employs an electronic wedge brake (EWB). The system is based on a two-degree-of-freedom (2-DOF) vehicle dynamic traction model, with the EWB acting as the brake actuator. The developed control structure, known as the Self-Tuning PID controller, is made up of a proportional-integral-derivative (PID) controller that serves as the main feedback loop control and a fuzzy supervisory system that serves as a tuner for the PID controller gains. This control structure is generated through two structures, namely FPID and SFPID, where the difference between these two structures is based on the fuzzy input used. An ABS-based PID controller and a fuzzy fractional PID controller developed in previous works were used as the benchmark, as well as the testing method, to evaluate the effectiveness of the controller structure. According to the results of the tests, the performance of the SFPID controller is better than that of other PID and FPID controllers, being 10% and 1% faster in terms of stopping time, 8% and 1% shorter in terms of stopping distance, 9% and 1% faster in terms of settling time, and 40% and 5% more efficient in reaching the target slip, respectively.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Youguo He ◽  
Chuandao Lu ◽  
Jie Shen ◽  
Chaochun Yuan

This paper is concerned with the problem of constraint control for an Antilock Braking System (ABS) with time-varying asymmetric slip ratio constraints. A quarter vehicle braking model with system uncertainties and a Burckhardt’s tire model are considered. The Time-varying Asymmetric Barrier Lyapunov Function (TABLF) is embedded into the controllers for handling the time-varying asymmetric slip ratio constraint problems. Two adaptive nonlinear control methods (TABLF1 and TABLF2) based on TABLF are proposed not only to track the optimal slip ratio but also to guarantee no violation on the slip ratio constraints. Simulation results show that the proposed controllers can guarantee no violation on slip ratio constraints and avoid self-locking. In the meantime, TABLF1 controller can achieve a faster convergence rate, shorter stopping time, and shorter distance, compared to TABLF2 controller with the same control parameters.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Cheng-Ping Yang ◽  
Ming-Shien Yang ◽  
Tyng Liu

A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1294
Author(s):  
Xiangdang XUE ◽  
Ka Wai Eric CHENG ◽  
Wing Wa CHAN ◽  
Yat Chi FONG ◽  
Kin Lung Jerry KAN ◽  
...  

An antilock braking system (ABS) is one of the most important components in a road vehicle, which provides active protection during braking, to prevent the wheels from locking-up and achieve handling stability and steerability. The all-electric ABS without any hydraulic components is a potential candidate for electric vehicles. To demonstrate and examine the all-electric ABS algorithms, this article proposes a single-wheel all-electric ABS test bench, which mainly includes the vehicle wheel, the roller, the flywheels, and the electromechanical brake. To simulate dynamic operation of a real vehicle’s wheel, the kinetic energy of the total rotary components in the bench is designed to match the quarter of the one of a commercial car. The vertical force to the wheel is adjustable. The tire-roller contact simulates the real tire-road contact. The roller’s circumferential velocity represents the longitudinal vehicle velocity. The design and analysis of the proposed bench are described in detail. For the developed prototype, the rated clamping force of the electromechanical brake is 11 kN, the maximum vertical force to the wheel reaches 300 kg, and the maximum roller (vehicle) velocity reaches 100 km/h. The measurable bandwidth of the wheel speed is 4 Hz–2 kHz and the motor speed is 2.5 Hz–50 kHz. The measured results including the roller (vehicle) velocity, the wheel velocity, and the wheel slip are satisfactory. This article offers the effective tools to verify all-electric ABS algorithms in a laboratory, hence saving time and cost for the subsequent test on a real road.


Sign in / Sign up

Export Citation Format

Share Document