scholarly journals PERFORMANCE ANALYSIS OF 4-OUTLETS SPRAY AERATOR FOR PROCESSING OF INDIGOFERA LEAVES (Indigofera Tinctoria Linn) BECOMES NATURAL DYE SUBSTANCES

2017 ◽  
Vol 6 (2) ◽  
pp. 76-86
Author(s):  
Ida Bagus Putu Sukadana ◽  
I Made Rajendra ◽  
Ida Ayu Anom Arsani ◽  
I Wayan Suastawa

The commonly known natural dye substance processing for traditional clothes, such as batik and tenun (woven cloth) is fermentation. The fermentation process can specifically be continued with extraction to produce indigo paste. The process can be done mechanically, i.e. by stirring process, and chemically. In order to accelerate the production, manual process of aeration can be substituted with jet-spray aerator. The aerator prototype which has been developed is acrylic aerator tube with diameter of 240 mm and thickness of 5 mm. The tube was made 1 m long to provide with a sufficient space for indigo foam. Its bottom part is completed with spiral air hose having five small holes of 0.2, 0.4, and 0.6 mm diameter uniformly located along the height of solution in the tube. The aerator was designed for the 10 litters of fermentation solution of 1 kilogram indigofera leaves. Based on the mass of indigo paste produced, the optimum working condition of the aerator is achieved on 3.8 m/sec air velocity and supply pressure of 2 bar with duration of 60 minutes. The aeration test indicated operational characteristic was quite good, i.e. Oxygen Transfer Rate (OTR) of 3.6 kg/hour, Aeration Efficiency (AE) of 4.8 kg/kWh and factual Oxygen Transfer Efficiency (OTE) of 44%.

2009 ◽  
Vol 36 (1) ◽  
pp. 137-147 ◽  
Author(s):  
K.I. Ashley ◽  
D.S. Mavinic ◽  
K.J. Hall

A pilot-scale, full lift, hypolimnetic aerator was used to examine the effect of diffuser pore diameter, depth of diffuser submergence, and gas flow rate on oxygen transfer, using four standard units of measure for quantifying oxygen transfer: (a) KLa20 (h–1), the oxygen transfer coefficient at 20 °C; (b) SOTR (g O2·h–1), the standard oxygen transfer rate; (c) SAE (g O2·kWh–1), the standard aeration efficiency and (d) SOTE (%), the standard oxygen transfer efficiency. Diffuser depth (1.5 and 2.9 m) exerted a significant effect on KLa20, SOTR, SAE, and SOTE, with all units of measure increasing in response to increased diffuser depth. Both KLa20 and SOTR responded positively to increased gas flow rates (10, 20, 30, and 40 L·min–1), whereas both SAE and SOTE responded negatively. Orifice diameter (140, 400, and 800 µm) exerted a significant effect on KLa20, SOTR, SAE, and SOTE, with all units of measure increasing with decreasing orifice size. These experiments demonstrate how competing design factors interact to determine overall oxygen transfer rates in full lift hypolimnetic aeration systems. The practical application for full lift hypolimnetic aerator design is to maximize the surface area of the bubbles, use fine (i.e., ~140 μm) pore diameter diffusers, and locate the diffusers at the maximum practical depth.


2009 ◽  
Vol 4 (3) ◽  
Author(s):  
M.R. Ghomi ◽  
M. Sohrabnejad ◽  
M. R. Ovissipour

A 1.1 kW submersible water pump with a venturi air injector was used in this study to examine the effects of three factors including nozzle diameter (14, 17 and 20 mm), aeration depth (20, 40 and 60 cm), and aeration angle (0, 22.5 and 45°) on standard aeration efficiency (SAE). For maximum air entrainment, HT / DT ratio and DT / DN ratio were equal to zero and 2, respectively. Among the first factor experiments, 14 mm nozzle diameter showed the highest SAE value (P<0.05). Although, 60 cm aeration depth and 45° aeration angle had more SAE value among other depths and angles, but there was not a significant difference (P>0.05) in each aeration depths and angles. Only, the determination coefficient for effect of nozzle diameters on SAE value showed a good result (R2= 0.958). The greatest oxygen transfer efficiency in this study has been achieved with using 14 mm nozzle size, 60 cm depth of aeration, and 45° angle of venturi tube in water aeration that was 1.166 kgO2/ kWh. Venturi aerators are very inexpensive in comparison with other aerators and have some other advantages that can be considered as one of the best devices for water aeration.


2013 ◽  
Vol 67 (12) ◽  
pp. 2692-2698 ◽  
Author(s):  
P. Wójtowicz ◽  
M. Szlachta

Hydrodynamic flow regulators are used in environmental engineering as a replacement for traditional flow throttling devices. They are extremely efficient, reliable and free from the common disadvantages of traditional devices. Recent research by the authors indicated that the atomization of a liquid by hydrodynamic flow regulators accelerates oxygenation and may be used for improving the quality of wastewater and stormwater. To date, an evaluation of the aeration capacity of a hydrodynamic flow regulator at the pilot scale or in a practical situation has not been presented in the literature. This study presents the experimental results of oxygen absorption tests for conventional and modified cylindrical hydrodynamic flow regulators (patent pending). These devices were tested in a closed-circuit experimental setup at the semi-commercial scale. The aeration efficiency of hydrodynamic flow regulators was assessed by means of the overall standard oxygen transfer coefficient (KLa(20), h−1) and standard oxygen transfer rate (SOTR, gO2/h) for a wide range of tested configurations. The effect of flow rate and discharge mode on the aeration capacity of flow regulators was investigated. The values of KLa(20) for cylindrical hydrodynamic flow regulators obtained in the experiments were between 2.62 and 15.57 h−1 while SOTR values ranged from 53 to 316 gO2/h. The modified discharge mode with two active outlets allowed for an increase in aeration efficiency of up to 15% compared to conventional designs.


2003 ◽  
Vol 38 (3) ◽  
pp. 527-539 ◽  
Author(s):  
M. Emin Emiroglu ◽  
Ahmet Baylar

Abstract Dissolved oxygen is essential to healthy streams and lakes. The dissolved oxygen level is an indication of how polluted the water is and how well the water can support aquatic plant and animal life. A higher dissolved oxygen level indicates better water quality. There is a significant oxygen transfer associated with most hydraulic structures because the air entrained into the flow is split into small bubbles, which greatly increases the surface area for transfer. Stepped chutes are a particular instance of this, and the aeration efficiency of such structures has not been studied in the laboratory and field. In this paper, the aeration performance of the stepped chutes with and without end sill was investigated in a large laboratory stepped chute. An empirical correlation predicting the oxygen transfer efficiency was developed for stepped chutes. The results indicated that l/h and s/h had a significant effect on the aeration efficiency of stepped chutes.


2008 ◽  
Vol 3 (3) ◽  
Author(s):  
Shao-Yuan Leu ◽  
Diego Rosso ◽  
Pan Jiang ◽  
Lory E. Larson ◽  
Michael K. Stenstrom

Aeration is the most energy intensive unit operation in municipal wastewater treatment. To improve oxygen transfer rate, fine-pore diffusers have been wildly applied in aeration practice. However, during operation, this type of diffuser suffers from fouling and scaling problems, which cause a rapid decline in aeration performance and significant increase in energy consumption. Diffusers must be cleaned periodically to reduce energy costs. The cleaning frequency of diffusers is site-specific, and can be evaluated by oxygen transfer efficiency (OTE) measurements over time in operation. Off-gas testing is the only technique that directly measures oxygen transfer efficiency in real-time. This paper presents a time-series of off-gas measurements which demonstrate the value of implementing energy-conservation practices. Our results include the real-time prediction of plant load and alpha factors from off-gas testing, as well as the quantification of the increased energy costs caused by fouling. Our off-gas analyzer can be used to develop an aeration efficiency monitoring protocols, and an aeration feedback control system for blowers.


2021 ◽  
Vol 25 (Special) ◽  
pp. 3-213-3-223
Author(s):  
Anfal E. Khalaf ◽  
◽  
Mohammed A. Rashid ◽  

Experimental analysis for a fabricated Low-Speed surface aerator that can be used in wastewater and water treatment is presented in this research. The designed impeller configuration was tested to determine its power consumption, standard oxygen transfer rate (SOTR), and standard aeration efficiency (SAE). Impeller oxygen transfer and power consumption in a scaled laboratory tank were measured during aeration phase. The impeller was consisting of 8 inclines flat blades with an angle of 45° from center of the disc, was operated at 3 different immersion depths and 5 different rotational speeds for examining the impact of such factors on impeller efficiency. The results recorded that the best standard aeration efficiency for this configuration is (0.206 Kg. O2/KW.hr) at 120rpm and 7cm depth of the submersion, i.e. submersion depth to impeller diameter (h/D) ratio equals 0.175. Submergence depth increase beyond this limit would result in SAE decrease and definitely result into more power consumption.


Author(s):  
А.Н. Григорьева ◽  
Р.Ш. Абиев

Аэрация при очистке сточных вод является самым энергоемким процессом. Затраты на обеспечение биологической очистки кислородом составляют около 60% в структуре себестоимости очистки. Таким образом, эффективность массообмена и снижение расхода воздуха является актуальной задачей для предприятий, которые стремятся повысить экономическую эффективность своей деятельности. Цель данной работы – определить эффективность пневмомеханической системы аэрации с использованием турбинной мешалки и разработанной авторами новой конической мешалки, а также сравнить эффективность диспергирования газа в пневматической и пневмомеханической системах аэрации. В качестве критерия для сравнения выбран показатель SOTE (Standard Oxygen Transfer Efficiency), который является основным технологическим параметром, позволяющим сравнивать эффективность различных аэрационных систем. Второй критерий эффективности – показатель SAE (Standard Aeration Efficiency) – отношение количества растворенного в жидкости кислорода к количеству используемой электроэнергии. В результате проведенных экспериментальных исследований установлено, что коническая мешалка по скорости насыщения воды кислородом работает также эффективно, как и турбинная, потребляя при этом гораздо меньше электроэнергии. С разработкой конического колеса вследствие низкого сопротивления лопастей перемешивание в системе «газ – жидкость» возможно в аппаратах больших размеров, что особенно актуально для аэротенков с небольшой глубиной при биологической очистке сточных вод в условиях, когда эффективность пневматической системы существенно снижается.


2015 ◽  
Vol 42 (10) ◽  
pp. 737-746 ◽  
Author(s):  
Tyler W. Barber ◽  
Ken I. Ashley ◽  
Donald S. Mavinic ◽  
Ken Christison

There remains significant potential for improvement in oxygen transfer efficiency, which can account for 60% of water and wastewater treatment energy requirements. This research examined superoxygenation, or aerating water under pressure with high-purity oxygen gas. Examined were the effects superoxygenation has on five key aeration design parameters: the mass transfer coefficient (KLa), saturation concentration ([Formula: see text]), standard oxygen transfer rate (SOTR), standard aeration efficiency (SAE), and standard oxygen transfer efficiency (SOTE). This research compared values under pressures of 0, 50, 100, 150, and 200 kPa using air and pressure swing adsorption (PSA) generated oxygen. It was found that with increasing pressure for both air and PSA oxygen: KLa decreased, [Formula: see text] increased, SOTR and SAE remained constant, and SOTE increased. While comparing air and PSA oxygen, oxygen was found to have a similar KLa, larger [Formula: see text], SOTR, and SOTE, and a lower SAE. It was concluded that superoxygenation is a viable method for increasing oxygen transfer and could potentially reduce oxygenation costs in water treatment processes.


2008 ◽  
Vol 7 (3) ◽  
pp. 199-211 ◽  
Author(s):  
Dan Cascaval ◽  
Anca-Irina Galaction ◽  
Stefanica Camarut ◽  
Radu Z. Tudose

2008 ◽  
Vol 59 (2) ◽  
pp. 220-225
Author(s):  
Miroslav Stanojevic ◽  
Aleksandar Jovovic1 ◽  
Dejan Radic ◽  
Milan Pavlovic

This paper presents the results of an experimental investigation of aeration of water with a corresponding mass concentration of waste motor oil depending on the height of the liquid column for varied flow of air introduced into the water. The aeration process for water column heights of 1 and 2 m were investigated. The purpose of investigations performed on an experimental installation was comparison of technical indicators of the aeration process depending on the height of the water column and air flow in order to achieve more efficient purification of waste water.


Sign in / Sign up

Export Citation Format

Share Document