TRANSFORMATION OF PITUITARY TUMOURS FROM PROLACTIN-INTO TSH-CELL TYPE II. ENDOCRINE ASPECTS

1965 ◽  
Vol 49 (3_Suppl) ◽  
pp. S162 ◽  
Author(s):  
H. G. Kwa ◽  
Constance A. Feltkamp
Keyword(s):  
Type Ii ◽  
1989 ◽  
Vol 257 (3) ◽  
pp. C579-C587 ◽  
Author(s):  
N. A. Saunders ◽  
J. K. McGeachie ◽  
K. F. Ilett ◽  
R. F. Minchin

The lungs have a high polyamine transport capability, and the type II pneumocyte has recently been identified as a major site of putrescine uptake and localization (N. A. Saunders, P. J. Rigby, K. F. Ilett, and R. F. Minchin. Lab. Invest. 59: 380-386, 1988). However, recent evidence suggests that multiple polyamine transport systems exist. In the present study, localization of spermidine uptake in rabbit lung was investigated. Although [14C]spermidine was rapidly accumulated by lung slices, it was not significantly metabolized, and no efflux of the accumulated polyamine was apparent. Autoradiographs prepared after [3H]spermidine transport revealed a localization of uptake activity to cells identified by electron microscopy as type II pneumocytes. Spermidine uptake occurred in all type II cells examined and thus appeared to be a characteristic function of this cell type. In contrast, spermidine uptake was virtually absent in the major airways and blood vessels, whereas moderate uptake was associated with pulmonary alveolar macrophages and alveolar tissue. Subsequent purification and culture of type II pneumocytes showed these cells to have significant polyamine uptake activity. In addition, spermidine uptake activity was positively correlated with the proportion of type II cells present at the various stages of their purification. In other studies, cultured pulmonary alveolar macrophages possessed similar uptake activity to that of cultured type II cells. Combined, these data suggest that both type II cells and pulmonary alveolar macrophages may represent major sites of spermidine uptake in vivo. We also suggest that the transport of polyamines by type II cells may reflect a critical role for polyamines in a characteristic function of this cell type.


2009 ◽  
Vol 102 (5) ◽  
pp. 2834-2845 ◽  
Author(s):  
Andreas Husch ◽  
Moritz Paehler ◽  
Debora Fusca ◽  
Lars Paeger ◽  
Peter Kloppenburg

A diverse population of local interneurons (LNs) helps to process, structure, and spatially represent olfactory information in the insect antennal lobe. In Periplaneta americana, we identified two subtypes of nonspiking local interneurons (type II LNs) by their distinct morphological and intrinsic electrophysiological properties. As an important step toward a better understanding of the cellular mechanisms that mediate odor information processing, we present a detailed analysis of their distinct voltage-activated Ca2+ currents, which clearly correlated with their distinct intrinsic electrophysiological properties. Both type II LNs did not posses voltage-activated Na+ currents and apparently innervated all glomeruli including the macroglomerulus. Type IIa LNs had significant longer and thicker low-order neurites and innervated each glomerulus entirely and homogeneously, whereas type IIb LNs innervated only parts of each glomerulus. All type II LNs were broadly tuned and responded to odorants of many chemical classes with graded changes in the membrane potential. Type IIa LNs responded with odor-specific elaborate patterns of excitation that could also include “spikelets” riding on the depolarizations and periods of inhibition. In contrast, type IIb LNs responded mostly with sustained, relatively smooth depolarizations. Consistent with the strong active membrane properties of type IIa LNs versus type IIb LNs, the voltage-activated Ca2+ current of type IIa LNs activated at more hyperpolarized membrane potentials and had a larger transient component.


1995 ◽  
Vol 181 (6) ◽  
pp. 2181-2186 ◽  
Author(s):  
F Colotta ◽  
S Orlando ◽  
E J Fadlon ◽  
S Sozzani ◽  
C Matteucci ◽  
...  

Molecules representative of different classes of chemotactic agents, including formyl-Met-Leu-Phe (FMLP), C5a, leukotriene B4, platelet-activating factor, and interleukin (IL)-8, caused a rapid reduction in the IL-1 binding capacity by human polymorphonuclear leukocytes (PMN), a cell type expressing predominantly the IL-1 type II decoy receptor (IL-1 decoy RII). N-t-Boc-Met-Leu-Phe, an antagonist for the FMLP receptor, inhibited the loss of IL-1 binding capacity induced by FMLP. Monocyte chemotactic protein 1, a chemokine related to IL-8 but inactive on PMN, had no effect on IL-1 binding in this cell type. FMLP was selected for further detailed analysis of chemoattractant-induced loss of IL-1 binding by PMN. The action of FMLP was rapid, reaching 50% of its maximum (80%) at 30 s, the earliest measurable time point, and plateauing between 10 and 30 min. Dose-response analysis revealed that maximal reduction of IL-1 binding was reached at FMLP concentrations that were also optimal for chemotaxis (50% effective dose = 5 x 10(-9) M). The loss of IL-1 binding capacity caused by FMLP was determined by a reduction in receptor number with no change in their affinity. The effect of FMLP on IL-1 receptor (IL-1R) was selective in that the PMN surface structures IL-8R, CD16, CD18, and major histocompatibility complex class I antigens were unaffected under these conditions. Loss of surface IL-1R was not due to an augumented rate of internalization. FMLP caused rapid release of a 45-kD IL-1-binding molecule identified as the IL-1 decoy RII. After FMLP-induced release, PMN reexpressed newly synthesized receptors, reaching basal levels by 4 h. FMLP-induced release of the IL-1 decoy RII did not impair the responsiveness of PMN to IL-1 in terms of promotion of survival and cytokine production. FMLP-induced release of the IL-1 decoy RII was unaffected by protein synthesis inhibitors, was blocked by certain protease inhibitors, and was mimicked by agents (the Ca++ ionophore A23187 and phorbol myristate acetate) that recapitulate elements in the signal transduction pathway of chemoattractant receptors. The time frame and concentration range of chemoattractant-induced rapid release of the IL-1 decoy RII are consistent with the view that IL-1 decoy RII release is an early event in the multistep process of leukocyte recruitment.(ABSTRACT TRUNCATED AT 400 WORDS)


2002 ◽  
Vol 62 (3) ◽  
pp. 547-555 ◽  
Author(s):  
S. T. SOUZA ◽  
A. M. LEAL-ZANCHET

Girardia biapertura was described with sperm ducts penetrating the penis bulb, subsequently opening separately at the tip of the penis papilla and receiving the abundant secretion of penial glands. In the present work, the penial glands of this species have been histologically and histochemically analysed, and four types of secretory cells are distinguished. The openings of the penial glands into the intrabulbar and intrapapillar sperm ducts, designated here as intrapenial ducts, allow for the distinction between three histologically differentiated regions. The most proximal region possibly corresponds to the bulbar cavity of other freshwater triclads whereas the median and distal portions correspond to the ejaculatory duct. The proximal region of the intrapenial ducts receives mainly the openings of a secretory cell type (type I) that produces a proteinaceous secretion. A second type of secretory cell (type II) that secretes neutral mucopolyssacharides opens into the median region of the intrapenial ducts. The distal portion of the ducts receives two types of secretory cells (types III and IV) which secret glycoprotein and glycosaminoglycans, respectively. Types III and IV open also directly into the male atrium through the epithelium of the penis papilla. A comparison with the results presented here and those of other authors for species of Girardia is provided and the importance of the study of the penial glands for taxonomic characterisation of freshwater triclads is emphasised.


2013 ◽  
Vol 44 (6) ◽  
pp. 1131-1145 ◽  
Author(s):  
Amanda L. Wilson ◽  
Steven H. Swerdlow ◽  
Grzegorz K. Przybylski ◽  
Urvashi Surti ◽  
John K. Choi ◽  
...  

1997 ◽  
Vol 5 (3) ◽  
pp. 247-260 ◽  
Author(s):  
B. J. Bolognese ◽  
S. D. Holmes ◽  
L. J. McMillan ◽  
K. F. Kaiser ◽  
L. A. Marshall

Biochemistry ◽  
1989 ◽  
Vol 28 (19) ◽  
pp. 7644-7662 ◽  
Author(s):  
Raj B. Parekh ◽  
Raymond A. Dwek ◽  
Jerry R. Thomas ◽  
Ghislain Opdenakker ◽  
Thomas W. Rademacher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document