DEFECTIVE STEROIDAL SYNTHESIS BY ADRENAL TISSUE: THE CONTROL OF GENE EXPRESSION CAUSING LOSS OF ACTIVE STEROIDOGENIC ENZYMES

1974 ◽  
Vol 77 (2) ◽  
pp. 325-336
Author(s):  
K. Williams

ABSTRACT RNA was isolated from normal human adrenal glands and found to cause the formation of Δ5-3β-hydroxysteroid dehydrogenase-isomerase and steroid 21-hydroxylase activities by a Krebs II ascites cell-free protein synthesising system. Although no functional steroid 21-hydroxylase in vivo or in vitro was found in a gland from a patient with virilism due to congenital adrenocortical hyperplasia the RNA would still give steroid 21-hydroxylase-like activity in the protein synthesising system which suggests that the inherited defect was not in the structural gene. Activity could not be induced by RNA from a 'non-functioning' adrenocortical tumour or rat liver.

2019 ◽  
Vol 77 (16) ◽  
pp. 3231-3244 ◽  
Author(s):  
Maria Pokornowska ◽  
Marek C. Milewski ◽  
Kinga Ciechanowska ◽  
Agnieszka Szczepańska ◽  
Marta Wojnicka ◽  
...  

Abstract The ribonuclease Dicer produces microRNAs (miRNAs) and small interfering RNAs that are handed over to Ago proteins to control gene expression by targeting complementary sequences within transcripts. Interestingly, a growing number of reports have demonstrated that the activity of Dicer may extend beyond the biogenesis of small regulatory RNAs. Among them, a report from our latest studies revealed that human Dicer facilitates base pairing of complementary sequences present in two nucleic acids, thus acting as a nucleic acid annealer. Accordingly, in this manuscript, we address how RNA structure influences the annealing activity of human Dicer. We show that Dicer supports hybridization between a small RNA and a complementary sequence of a longer RNA in vitro, even when both complementary sequences are trapped within secondary structures. Moreover, we show that under applied conditions, human Ago2, a core component of RNA-induced silencing complex, displays very limited annealing activity. Based on the available data from new-generation sequencing experiments regarding the RNA pool bound to Dicer in vivo, we show that multiple Dicer-binding sites within mRNAs also contain miRNA targets. Subsequently, we demonstrate in vitro that Dicer but not Ago2 can anneal miRNA to its target present within mRNA. We hypothesize that not all miRNA duplexes are handed over to Ago proteins. Instead, miRNA-Dicer complexes could target specific sequences within transcripts and either compete or cooperate for binding sites with miRNA-Ago complexes. Thus, not only Ago but also Dicer might be directly involved in the posttranscriptional control of gene expression.


2021 ◽  
Author(s):  
Milca Rachel da Costa Ribeiro Lins ◽  
Graciely Gomes Correa ◽  
Laura Araujo da Silva Amorim ◽  
Rafael Augusto Lopes Franco ◽  
Nathan Vinicius Ribeiro ◽  
...  

Bacillus subtilis employs five purine riboswitches for the control of purine de novo synthesis and transport at the transcription level. All of them are formed by a structurally conserved aptamer, and a variable expression platform harboring a rho-independent transcription terminator. In this study, we characterized all five purine riboswitches under the context of active gene expression processes both in vitro and in vivo. We identified transcription pause sites located in the expression platform upstream of the terminator of each riboswitch. Moreover, we defined a correlation between in vitro transcription readthrough and in vivo gene expression. Our in vitro assay demonstrated that the riboswitches operate in the micromolar range of concentration for the cognate metabolite. Our in vivo assay showed the dynamics of control of gene expression by each riboswitch. This study deepens the knowledge of the regulatory mechanism of purine riboswitches.


2018 ◽  
Author(s):  
Sara Sdelci ◽  
André F. Rendeiro ◽  
Philipp Rathert ◽  
Gerald Hofstätter ◽  
Anna Ringler ◽  
...  

The histone acetyl-reader BRD4 is an important regulator of chromatin structure and transcription, yet factors modulating its activity have remained elusive. Here we describe two complementary screens for genetic and physical interactors of BRD4, which converge on the folate pathway enzyme MTHFD1. We show that a fraction of MTHFD1 resides in the nucleus, where it is recruited to distinct genomic loci by direct interaction with BRD4. Inhibition of either BRD4 or MTHFD1 results in similar changes in nuclear metabolite composition and gene expression, and pharmacologic inhibitors of the two pathways synergize to impair cancer cell viability in vitro and in vivo. Our finding that MTHFD1 and other metabolic enzymes are chromatin-associated suggests a direct role for nuclear metabolism in the control of gene expression.


2018 ◽  
Author(s):  
Yale S. Michaels ◽  
Mike B. Barnkob ◽  
Hector Barbosa ◽  
Toni A. Baeumler ◽  
Mary K. Thompson ◽  
...  

ABSTRACTPrecise, analogue regulation of gene expression is critical for development, homeostasis and regeneration in mammals. In contrast, widely employed experimental and therapeutic approaches such as knock-in/out strategies are more suitable for binary control of gene activity, while RNA interference (RNAi) can lead to pervasive off-target effects and unpredictable levels of repression. Here we report on a method for the precise control of gene expression levels in mammalian cells based on engineered, synthetic microRNA response elements (MREs). To develop this system, we established a high-throughput sequencing approach for measuring the efficacy of thousands of miR-17 MRE variants. This allowed us to create a library of microRNA silencing-mediated fine-tuners (miSFITs) of varying strength that can be employed to control the expression of user specified genes. To demonstrate the value of this technology, we used a panel of miSFITs to tune the expression of a peptide antigen in a mouse melanoma model. This analysis revealed that antigen expression level is a key determinant of the anti-tumour immune response in vitro and in vivo. miSFITs are a powerful tool for modulating gene expression output levels with applications in research and cellular engineering.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kelly A Rotstan ◽  
Michael M Abdelsayed ◽  
Luiz FM Passalacqua ◽  
Fabio Chizzolini ◽  
Kasireddy Sudarshan ◽  
...  

Optogenetic tools have revolutionized the study of receptor-mediated processes, but such tools are lacking for RNA-controlled systems. In particular, light-activated regulatory RNAs are needed for spatiotemporal control of gene expression. To fill this gap, we used in vitro selection to isolate a novel riboswitch that selectively binds the trans isoform of a stiff-stilbene (amino-tSS)–a rapidly and reversibly photoisomerizing small molecule. Structural probing revealed that the RNA binds amino-tSS about 100-times stronger than the cis photoisoform (amino-cSS). In vitro and in vivo functional analysis showed that the riboswitch, termed Werewolf-1 (Were-1), inhibits translation of a downstream open reading frame when bound to amino-tSS. Photoisomerization of the ligand with a sub-millisecond pulse of light induced the protein expression. In contrast, amino-cSS supported protein expression, which was inhibited upon photoisomerization to amino-tSS. Reversible photoregulation of gene expression using a genetically encoded RNA will likely facilitate high-resolution spatiotemporal analysis of complex RNA processes.


2016 ◽  
Author(s):  
Evan J. Olson ◽  
Constantine N. Tzouanas ◽  
Jeffrey J. Tabor

AbstractIn optogenetics, light signals are used to control genetically engineered photoreceptors, and in turn manipulate biological pathways with unmatched precision. Recently, evolved photoreceptors with diverse in vitro-measured wavelength and intensity-dependent photoswitching properties have been repurposed for synthetic control of gene expression, proteolysis, and numerous other cellular processes. However, the relationship between the input light spectrum and in vivo photoreceptor response dynamics is poorly understood, restricting the utility of these optogenetic tools. Here, we advance a classic in vitro two-state photoreceptor model to reflect the in vivo environment, and combine it with simplified mathematical descriptions of signal transduction and output gene expression through our previously engineered green/red and red/far red photoreversible bacterial two-component systems (TCSs). Additionally, we leverage our recent open-source optical instrument to develop a workflow of spectral and dynamical characterization experiments to parameterize the model for both TCSs. To validate our approach, we challenge the model to predict experimental responses to a series of complex light signals very different from those used during parameterization. We find that the model generalizes remarkably well, predicting the results of all categories of experiments with high quantitative accuracy for both systems. Finally, we exploit this predictive power to program two simultaneous and independent dynamical gene expression signals in bacteria expressing both TCSs. This multiplexed gene expression programming approach will enable entirely new studies of how metabolic, signaling, and decision-making pathways integrate multiple gene expression signals. Additionally, our approach should be compatible with a wide range of optogenetic tools and model organisms.Significance statementLight-switchable signaling pathways (optogenetic tools) enable precision studies of how biochemical networks underlie cellular behaviors. We have developed a versatile mathematical model based on a two-state photoconversion mechanism that we have applied to the E. coli CcaSR and Cph8-OmpR optogenetic tools. This model enables accurate prediction of the gene expression response to virtually any light source or mixture of light sources. We express both optogenetic tools in the same cell and apply our model to program two simultaneous and independent gene expression signals in the same cell. This method can be used to study how biological pathways integrate multiple inputs and should be extensible to other optogenetic tools and host organisms.


1992 ◽  
Vol 67 (01) ◽  
pp. 060-062 ◽  
Author(s):  
J Harsfalvi ◽  
E Tarcsa ◽  
M Udvardy ◽  
G Zajka ◽  
T Szarvas ◽  
...  

Summaryɛ(γ-glutamyl)lysine isodipeptide has been detected in normal human plasma by a sensitive HPLC technique in a concentration of 1.9-3.6 μmol/1. Incubation of in vitro clotted plasma at 37° C for 12 h resulted in an increased amount of isodipeptide, and there was no further significant change when streptokinase was also present. Increased in vivo isodipeptide concentrations were also observed in hypercoagulable states and during fibrinolytic therapy.


Sign in / Sign up

Export Citation Format

Share Document