Maintenance of complete but quantitatively reduced spermatogenesis in hypophysectomized monkeys by testosterone alone

1986 ◽  
Vol 113 (3) ◽  
pp. 424-431 ◽  
Author(s):  
G. R. Marshall ◽  
F. Jockenhövel ◽  
D. Lüdecke ◽  
E. Nieschlag

Abstract. In order to investigate whether testosterone can maintain spermatogenesis in the absence of FSH in primates, four cynomolgus monkeys were hypophysectomized and implanted with 20 5-cm-long testosteronefilled silastic capsules within 45 min of pituitary ablation. Thereafter the serum levels of testosterone were elevated about 9-fold over presurgical levels. Testicular volumes declined to 60% of presurgical values. Testicular concentrations of testosterone were 50–180% of presurgical levels. Germ cell numbers were reduced to 30–50% of presurgical values and germ cell ratios suggested that the reduced numbers of all advanced germ cells were due to a decrease in the efficiency of proliferation of B spermatogonia. A fifth monkey was left untreated following hypophysectomy. Its serum testosterone was as low as that of castrated monkeys, and the testicular volume declined to 30% of that before surgery. Primitive spermatogonia were the only germ cells present 13 weeks after surgery. Thus, in primates testosterone alone maintains the complete process of spermatogenesis, however, spermatogonial proliferation is impaired in the absence of FSH.

1989 ◽  
Vol 123 (3) ◽  
pp. 403-NP ◽  
Author(s):  
J. M. S. Bartlett ◽  
G. F. Weinbauer ◽  
E. Nieschlag

ABSTRACT Synchronization of spermatogenesis would provide an ideal model for the investigation of stage-dependent changes in the secretion of paracrine factors. In vitamin A-deficient animals subsequently injected with vitamin A, over 80% of seminiferous tubules were synchronized within three to five stages of the seminiferous cycle. Following replenishment of vitamin A, spermatogenic stages IV–VI (35 days), VI–VIII (38 days), IX–XII (41 days), I–IV (45 days) and V–VII (48 days) were observed. Despite synchronization of spermatogenesis at all stages, spermatogenesis was markedly impaired when evaluated in a quantitative fashion. At all times evaluated, numbers of round spermatids were reduced compared with age-matched controls. Numbers of pachytene spermatocytes reached control values only after 45 days of vitamin A replenishment. Elongate spermatids were almost totally absent up to 41 days after vitamin A replenishment. Testicular and epididymal weights were also reduced, although testicular weights showed a significant recovery over the time-course of the study. Serum and pituitary concentrations of LH and FSH were raised at the commencement of the study, with serum gonadotrophins returning to control values 48 days after vitamin A replenishment. Both testicular and serum testosterone concentrations in treated animals tended to be higher than in the controls. Although synchronization of spermatogenesis was achieved, testicular testosterone concentrations did not reflect the stage-dependent cyclical changes observed in earlier studies. Testicular concentrations of testosterone were raised throughout the period of observation with the exception of animals synchronized around stages II–IV of the spermatogenic cycle. No correlation between the most frequent stages and intratesticular testosterone was found (r = 0·06, P > 0·1). Previous observations that testosterone concentrations are selectively increased at stages VII–VIII of the spermatogenic cycle are not supported by the present study. Journal of Endocrinology (1989) 123, 403–412


1975 ◽  
Vol 19 (3) ◽  
pp. 487-507
Author(s):  
P.B. Moens ◽  
A.D. Hugenholtz

The spermatogonia and early spermatocytes of 13 samples of rat seminiferous epithelium (about 0-05 mm2 each) were mapped from electron micrographs of serial sections. Clones of cells, connected by cytoplasmic bridges (syncytia of 2–100 cells), in various stages of spermatogenic development were identified. Maps of 7 separate areas are illustrated. It is concluded that, contrary to the models of spermatogonial proliferation based on light-microscope observations, regions of seminiferous epithelium which are identical in terms of spermatid and spermatocyte criteria have, in fact, quantitative and qualitative differences in their spermatogonial population. The data are interpreted that for a given epithelial area there is a periodic build-up of spermatogonia which then produce several successive quanta of spermatocytes and when the spermatogonia are depleted the process repeats. That cell numbers less than double following a mitotic cycle has generally been attributed to systematic degeneration. Evidence from electron microscopy indicates, however, that at the mitotic peaks not all the syncytia undergo division but that some remain arrested. Similarly, within a dividing syncytium a few cells do not divide while they advance developmentally with the syncytium as a whole. The observed large size of spermatocyte syncytia further argues against systematic degeneration with its attendant fragmentation of syncytia.


Reproduction ◽  
2009 ◽  
Vol 138 (5) ◽  
pp. 743-757 ◽  
Author(s):  
Sridurga Mithraprabhu ◽  
Kate L Loveland

The KIT ligand (KITL)/KIT-signalling system is among several pathways known to be essential for fertility. In the postnatal testis, the KIT/KITL interaction is crucial for spermatogonial proliferation, differentiation, survival and subsequent entry into meiosis. Hence, identification of endogenous factors that regulateKITsynthesis is important for understanding the triggers driving germ cell maturation. Although limited information is available regarding local factors in the testicular microenvironment that modulateKITsynthesis at the onset of spermatogenesis, knowledge from other systems could be used as a basis for identifying how KIT function is regulated in germ cells. This review describes the known regulators of KIT, including transcription factors implicated inKITpromoter regulation. In addition, specific downstream outcomes in biological processes that KIT orchestrates are addressed. These are discussed in relationship to current knowledge of mammalian germ cell development.


1996 ◽  
Vol 151 (1) ◽  
pp. 37-48 ◽  
Author(s):  
J Singh ◽  
D J Handelsman

Abstract We previously demonstrated that androgens alone, in the complete absence of gonadotropins, initiated qualitatively complete spermatogenesis in hypogonadal (hpg) mice. Although germ cell to Sertoli cell ratios were normal in hpg mice with androgen-induced spermatogenesis, testicular size, Sertoli cell and germ cell numbers only reached 40% of those of non-hpg mice, and Sertoli cell numbers were unaffected by androgen treatment started at 21 days of age. We postulated that these observations were due to diminished gonadotropin-dependent Sertoli cell proliferation during perinatal life while the Sertoli cells still exhibited normal carrying capacity for mature germ cells. In order to test this hypothesis, we examined the effects of administering androgens and gonadotropins to hpg mice during the first 2 weeks of postnatal life when Sertoli cells normally continue to proliferate. The study end-points were Sertoli and germ cell numbers in hpg mice following induction of spermatogenesis by 8 weeks treatment with 1 cm subdermal silastic testosterone implants. Newborn pups (postnatal day 0–1) were injected s.c. with recombinant human FSH (rhFSH) (0·5 IU/20 μl) or saline once daily for 14 days, with or without a single dose of testosterone propionate (TP) (100 μg/20 μl arachis oil) or human chorionic gonadotropin (hCG) (1 IU/20 μl). Untreated hpg and phenotypically normal littermates were studied as concurrent controls. At 21 days of age, all treated weanling mice received a 1 cm silastic subdermal testosterone implant and, finally, 8 weeks after testosterone implantation, all mice were killed. As expected, qualitatively complete spermatogenesis was induced in all groups by testosterone despite undetectable circulating FSH levels. Exogenous rhFSH increased testis size by 43% (P<0·002) but a single neonatal dose of either TP or hCG reduced the FSH effect although neither TP nor hCG had any effect alone. In contrast, a single neonatal dose of TP or hCG increased final seminal vesicle size whereas FSH had no effect. FSH and TP treatment significantly increased absolute numbers of testicular spermatids compared with saline treatment, whereas hCG and TP significantly increased testicular sperm when expressed relative to testis size. Stereological evaluation of Sertoli and germ cell numbers demonstrated a rise in the absolute numbers of Sertoli and all germ cell populations induced by neonatal administration of hormones. When expressed per Sertoli cells the numbers of germ cells in the treated mice were between 85 and 90% of non-hpg controls. We conclude that exogenous FSH treatment during the first 2 weeks of postnatal life, coinciding with the natural time of Sertoli cell proliferation, increases Sertoli cell numbers and thereby the ultimate size of the mature testis and its germ cell production. Thus neonatal gonadotropin secretion may be a critical determinant of the sperm-producing capacity of the mature testis. In addition, neonatal exposure to androgens could be important for the imprinting of sex accessory organs in hpg mice, with the long-term effects of altering the sensitivity of the accessory organs to exogenous testosterone later in life. Journal of Endocrinology (1996) 151, 37–48


Reproduction ◽  
2012 ◽  
Vol 143 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Niranjan Reddy ◽  
Ranjeet Singh Mahla ◽  
Revanth Thathi ◽  
Sanjay Kumar Suman ◽  
Jedy Jose ◽  
...  

Growth and development of immature testis xenograft from various domestic mammals has been shown in mouse recipients; however, buffalo testis xenografts have not been reported to date. In this study, small fragments of testis tissue from 8-week-old buffalo calves were implanted subcutaneously onto the back of immunodeficient male mouse recipients, which were either castrated or left intact (non-castrated). The xenografts were retrieved and analyzed 12 and 24 weeks later. The grafted tissue survived and grew in both types of recipient with a significant increase in weight and seminiferous tubule diameter. Recovery of grafts from intact recipients 24 weeks post-grafting was significantly lower than that from the castrated recipients. Seminal vesicle indices and serum testosterone levels were lower in castrated recipients at both collection time points in comparison to the intact recipients and non-grafted intact mouse controls. Pachytene spermatocytes were the most advanced germ cells observed in grafts recovered from castrated recipients 24 weeks post-grafting. Complete spermatogenesis, as indicated by the presence of elongated spermatids, was present only in grafts from intact recipients collected 24 weeks post-grafting. However, significant number of germ cells with DNA damage was also detected in these grafts as indicated by TUNEL assay. The complete germ cell differentiation in xenografts from intact recipients may be attributed to efficient Sertoli cell maturation. These results suggest that germ cell differentiation in buffalo testis xenograft can be completed by altering the recipient gonadal status.


Endocrinology ◽  
2003 ◽  
Vol 144 (2) ◽  
pp. 509-517 ◽  
Author(s):  
Miriam Haywood ◽  
Jenny Spaliviero ◽  
Mark Jimemez ◽  
Nicholas J. C. King ◽  
David J. Handelsman ◽  
...  

We recently created a novel transgenic (tg) model to examine the specific gonadal actions of FSH, distinct from LH effects, by expressing tg-FSH in gonadotropin-deficient hypogonadal (hpg) mice. Using this unique in vivo paradigm, we now describe the postnatal cellular development in seminiferous tubules selectively stimulated by tg-FSH alone or combined with testosterone (T). In the αβ.6 line, tg-FSH stimulated the maturation and proliferation (∼2-fold) of Sertoli cells in hpg testes. Total Sertoli cell numbers were also significantly increased (1.5-fold) independently of FSH effects by T treatment alone. Selective FSH activity in αβ.6 hpg testes increased total spermatogonia numbers 3-fold, which established a normal spermatogonia/Sertoli cell ratio. FSH also elevated meiotic spermatocyte numbers 7-fold, notably at pachytene (28-fold), but induced only limited numbers of postmeiotic haploid cells (absent in hpg controls) that arrested during spermatid elongation. In contrast, T treatment alone had little effect on postnatal spermatogonial proliferation but greatly enhanced meiotic progression with total spermatocytes increased 12-fold (pachytene 53-fold) relative to hpg testes, and total spermatid numbers 11-fold higher than tg-FSH hpg testes. Combining tg-FSH and T treatment had no further effect on Sertoli or spermatogonia numbers relative to FSH alone but had marked additive and synergistic effects on meiotic cells, particularly pachytene (107-fold more than hpg), to establish normal meiotic germ cell/Sertoli cell ratios. Furthermore, tg-FSH had a striking synergistic effect with T treatment on total spermatid numbers (19-fold higher than FSH alone), although spermatid to Sertoli cell ratios were not fully restored to normal, indicating elevated Sertoli cell numbers alone are insufficient to establish a maximal postmeiotic germ cell capacity. This unique model has allowed a detailed dissection of FSH in vivo activity alone or with T and provided compelling evidence that FSH effects on spermatogenesis are primarily via Sertoli and spermatogonial proliferation and the stimulation of meiotic and postmeiotic germ cell development in synergy with and dependent on T actions.


Author(s):  
Judy Ju-Hu Chiang ◽  
Robert Kuo-Cheng Chen

Germ cells from the rice stem borer Chilo suppresalis, were examined by light and electron microscopy. Damages to organelles within the germ cells were observed. The mitochondria, which provide the cell with metabolic energy, were seen to disintegrate within the germ cell. Lysosomes within the germ cell were also seen to disintegrate. The subsequent release of hydrolytic enzymesmay be responsible for the destruction of organelles within the germ cell. Insect spermatozoa were seen to lose the ability to move because of radiation treatment. Damage to the centrioles, one of which is in contact with the tail, may be involved in causing sperm immobility.


2005 ◽  
Vol 173 (4S) ◽  
pp. 119-119 ◽  
Author(s):  
Gerald Puehse ◽  
Armin Secker ◽  
Sebastian Kemper ◽  
Lothar Hertle ◽  
Sabine Kliesch

2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2021 ◽  
Vol 22 (5) ◽  
pp. 2540
Author(s):  
Teresa Chioccarelli ◽  
Marina Migliaccio ◽  
Antonio Suglia ◽  
Francesco Manfrevola ◽  
Veronica Porreca ◽  
...  

The objective of this work has been to characterize the estrogenic activity of bisphenol-A (BPA) and the adverse effects on the endocannabinoid system (ECS) in modulating germ cell progression. Male offspring exposed to BPA during the foetal-perinatal period at doses below the no-observed-adverse-effect-level were used to investigate the exposure effects in adulthood. Results showed that BPA accumulates specifically in epididymal fat rather than in abdominal fat and targets testicular expression of 3β-hydroxysteroid dehydrogenase and cytochrome P450 aromatase, thus promoting sustained increase of estrogens and a decrease of testosterone. The exposure to BPA affects the expression levels of some ECS components, namely type-1 (CB1) and type-2 cannabinoid (CB2) receptor and monoacylglycerol-lipase (MAGL). Furthermore, it affects the temporal progression of germ cells reported to be responsive to ECS and promotes epithelial germ cell exfoliation. In particular, it increases the germ cell content (i.e., spermatogonia while reducing spermatocytes and spermatids), accelerates progression of spermatocytes and spermatids, promotes epithelial detachment of round and condensed spermatids and interferes with expression of cell–cell junction genes (i.e., zonula occcludens protein-1, vimentin and β-catenin). Altogether, our study provides evidence that early exposure to BPA produces in adulthood sustained and site-specific BPA accumulation in epididymal fat, becoming a risk factor for the reproductive endocrine pathways associated to ECS.


Sign in / Sign up

Export Citation Format

Share Document