Effects of partial deficiency of IGF1 on hepatocellular architecture

2014 ◽  
Author(s):  
Victor Javier Lara ◽  
Ursula Munoz ◽  
Juan Enrique Puche ◽  
Mariano Garcia-Magarino ◽  
Jose Luis Lavandera ◽  
...  
Keyword(s):  
1965 ◽  
Vol 14 (03/04) ◽  
pp. 473-489 ◽  
Author(s):  
O Egeberg

SummaryNatural coagulation inhibitor factors were studied in sera, or in fractions of sera, from patients with congenital partial deficiency of antithrombin and from normal persons. In the patients’ sera the progressive antithrombin (antithrombin III) and heparin cofactor (antithrombin II) had both been measured around 50 per cent of normal level.No decreased activity could be demonstrated in the patients’ sera as to antiprothrombinase, the inhibitor against blood intrinsic prothrombinase activity.For anticonvertin, the inhibitor against the tissue convertin complex, the activity was found decreased to about the same level as that demonstrated for antithrombin III and II. The results lend strong support to the hypothesis that the activities measured as anticonvertin, antithrombin III and antithrombin II represent functions of the same blood protein, which on the other side appears to be distinct from antiprothrombinase. In accordance with this explanation, an antithrombin III concentrate had also antithrombin II and anticonvertin activity, and further, adsorption of a normal human serum with convertin appeared to specifically reduce its antithrombin III activity.The inhibitor against activated antihemophilic C factor (AHC’ = activated f. XI) was studied in sera adsorbed with BaS04 and celite. The inhibitor activity was found at normal level in the patients’ sera, consistent with the view that anti-AHC’ is distinct from antithrombin III, II and from anticonvertin. No acceleration of the anti-AHC’ activity could be demonstrated after addition to the inhibition mixture of weak solutions of heparin.The results are discussed.


1997 ◽  
Vol 77 (05) ◽  
pp. 0986-0990 ◽  
Author(s):  
Marco Cattaneo ◽  
Rossana Lombardi ◽  
Maddalena L Zighetti ◽  
Christian Gachet ◽  
Philippe Ohlmann ◽  
...  

SummaryBy the term “Primary Secretion Defect” (PSD), we mean a common heterogeneous group of congenital defects of platelet secretion, characterized by a normal primary wave of platelet aggregation induced by ADP and other agonists, a normal concentration of platelet granule contents, and normal production of thromboxane A2. The biochemical abnormalities responsible for PSD are not well known. Since a secretion defect similar to PSD is found in platelets that are severely deficient of binding sites for the ADP analogue 2MeS-ADP and do not aggregate in response to ADP, we tested the hypothesis that PSD platelets have moderately decreased 2MeS-ADP binding sites, which may be sufficient for normal ADP-induced aggregation but not for potentiating platelet secretion. The specific binding of [33P]2MeS-ADP to platelets from 3 PSD patients (347,443 and 490 sites/platelet; KD 2.8-3.9 nM) was lower than to platelets from 24 normal subjects (647 [530-1102]; KD = 3.8 [2.3-7.3]) (median [range]). Normal values were found in a fourth PSD patient (710; KD 3.7). The degree of inhibition of PGE1- induced cAMP increase by 0.1 |μM ADP was lower in patients than in controls. The secretion induced by the endoperoxide analogue U46619 from normal, acetylsalicylic acid-treated platelets under conditions that prevented the formation of large aggregates was potentiated by 1 fimol/1 ADP and inhibited by apyrase. These findings indicate that a partial deficiency of the platelet ADP receptor(s) might be responsible for the defect of platelet secretion in some PSD patients and that ADP potentiates platelet secretion independently of the formation of large aggregates and thromboxane A2 production.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


PEDIATRICS ◽  
1972 ◽  
Vol 50 (5) ◽  
pp. 702-711
Author(s):  
Michèle G. Brunette ◽  
Edgard Delvin ◽  
Bernard Hazel ◽  
Charles R. Scriver

The cause of severe intermittent lactic acidosis was investigated in a female infant with profound psychomotor retardation. Hypoglycemia, hyperpyruvic acidemia, and hyperalaninemia were identified in the newborn period. A triad of lactate, pyruvate, and alanine accumulation persisted throughout infancy, and ACTH, anorexia, and high carbohydrate feeding further provoked their accumulation. Careful dietary control or thiamine-HCl supplementation (5 to 20 mg/day) ameliorated the metabolic abnormality. Pyruvate dehydrogenase activity (which is thiamine-dependent) was normal in leukocytes and cultured skin fibroblasts. Hepatic pyruvate carboxylase activity (which is biotin-dependent) was found to comprise more than one component. There was a partial deficiency of total hepatic pyruvate carboxylase activity in the patient. The loss of activity was confined to the low-Km component of the enzyme which serves pvruvate metabolism in the physiological range. A defect in glucogenesis causing hypoglycemia, pyruvate accumulation with lactic acidosis, and aberrant amino acid metabolism can be attributed to the abnormality of pyruvate carboxylase. The response to thiamine in our patients may reflect activation of a normal "shunt" mechanism for pyruvate disposal via pyruvate dehydrogenase.


1978 ◽  
Vol 16 (11-12) ◽  
pp. 1079-1084 ◽  
Author(s):  
Shaul Yatziv ◽  
Robert P. Erickson ◽  
Robert Sandman ◽  
William van B. Robertson
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Cosimo A. Stamerra ◽  
Rita Del Pinto ◽  
Paolo di Giosia ◽  
Claudio Ferri ◽  
Amirhossein Sahebkar

The Anderson–Fabry disease is a rare, X-linked, multisystemic, progressive lysosomal storage disease caused by α-galactosidase A total or partial deficiency. The resulting syndrome is mainly characterized by early-onset autonomic neuropathy and life-threatening multiorgan involvement, including renal insufficiency, heart disease, and early stroke. The enzyme deficiency leads to tissue accumulation of the glycosphingolipid globotriaosylceramide and its analogues, but the mechanisms linking such accumulation to organ damage are only partially understood. In contrast, enzyme replacement and chaperone therapies are already fully available to patients and allow substantial amelioration of quality and quantity of life. Substrate reduction, messenger ribonucleic acid (mRNA)-based, and gene therapies are also on the horizon. In this review, the clinical scenario and molecular aspects of Anderson–Fabry disease are described, along with updates on disease mechanisms and emerging therapies.


2020 ◽  
Author(s):  
xiaoqing li ◽  
fei han ◽  
qianlong chen ◽  
tienan zhu ◽  
yongqiang zhao ◽  
...  

Abstract Background: Reversible splenial lesion syndrome (RESLES) is a clinico-radiological syndrome characterized by the presence of reversible lesions specifically involving the splenium of the corpus callosum (SCC). The cause of RESLES is unknown. However, infectious-related mild encephalitis/encephalopathy (MERS) with a reversible splenial lesion remains the most common cause of reversible splenial lesions. Acute intermittent porphyria (AIP) is an autosomal dominant disorder caused by a partial deficiency of porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthetic pathway. It can affect the autonomic, peripheral, and central nervous system. Result: In this study, we report a 20-year-old woman with AIP who presented with MRI manifestations suggestive of RESLES, she had a novel HMBS nonsense mutation, a G to A mutation in base 594, which changed tryptophan to a stop codon (W198*). Conclusion: To the best of our knowledge, this is only one published case of RELES associated with AIP.


Sign in / Sign up

Export Citation Format

Share Document