Association of dietary intake of fruit and green vegetables with PTEN and P53 mRNA gene expression in visceral and subcutaneous adipose tissues of obese and non-obese adults

Gene ◽  
2020 ◽  
Vol 733 ◽  
pp. 144353
Author(s):  
Golnoosh Kadkhoda ◽  
Maryam Zarkesh ◽  
Atoosa Saidpour ◽  
Masoumeh Hajizadeh Oghaz ◽  
Mehdi Hedayati ◽  
...  
2020 ◽  
Author(s):  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Golaleh Asghari ◽  
Mehdi Hedayati ◽  
Parvin Mirmiran ◽  
...  

Abstract Background: The aim of the present study was to investigate the association of habitual intake of total fatty acids, saturated-, monounsaturated-, polyunsaturated fatty acids, n-3, n-6, and n-9 fatty acids with apelin gene expression in visceral and subcutaneous adipose tissue. Methods: We obtained visceral and subcutaneous adipose tissues from 179 participants (71 non-obese and 105 obese), who had undergone open abdominal surgery. Dietary intake information was gathered with a valid and reliable food frequency questionnaire. The mRNA expression of apelin gene was analyzed by Real-Time PCR. Results: Apelin gene expression was found to be more increased in subcutaneous and visceral adipose tissues in obese than in non-obese participants. Dietary intake of n-3 and polyunsaturated fatty acids was associated with apelin gene expression in subcutaneous and visceral adipose tissues among all categories of weight status after adjusting for total energy intake. Among obese individuals, visceral adipose tissue apelin mRNA levels were associated with total fat intake. Conclusion: Higher apelin gene expression in adipocytes had an association with habitual intake of total fat and n-3 fatty acids in obese and non-obese individuals, indicating a determinative role of quality and quantity of fatty acid intake in a regular diet in adipose tissue adipokine.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1706-1706
Author(s):  
Emad Yuzbashian ◽  
Golaleh Asghari ◽  
Catherine B Chan ◽  
Mehdi Hedayati ◽  
Mohammad Safarian ◽  
...  

Abstract Objectives The fat mass and obesity-associated gene (FTO) is a functional candidate gene for type 2 diabetes mellitus (T2DM) and metabolic syndrome, based on evidence from genome-wide association studies (GWAS) that linked it to obesity and metabolic disorders. The FTO gene regulates energy expenditure and intake. We aimed to determine how fatty acid species measured in plasma and dietary intake associate with FTO gene expression in subcutaneous and visceral adipose tissues. Methods In this study, 97 participants aged ≥18 years were selected from patients admitted to the hospital for abdominal surgeries. These underlying disorders leading to surgeries were not expected to alter the habitual dietary intake of participants. Participants with diagnosed diabetes or cancer, under treatment of dyslipidemia or dysglycemia, and being on prescribed or any special diets were excluded. Habitual dietary intake of participants was collected using a valid and reliable food frequency questionnaire (FFQ), from which the intake of fatty acids was quantified. Plasma fatty acids were assessed by gas-liquid chromatography. The mRNA expression of the FTO gene in visceral and subcutaneous adipose tissues obtained by biopsy was measured by real-time quantitative PCR. Results After adjusting for age, HOMA-IR and body mass index, total fatty acid intake was significantly associated with FTO gene expression in visceral (STZβ = 0.208, P = 0.037) and subcutaneous (STZβ = 0.236, P = 0.020) adipose tissues. Dietary intake of MUFA and PUFA had positive significant associations with the expression of FTO in visceral (STZβ = 0.227, P = 0.023; STZβ = 0.346, P < 0.001, respectively) and subcutaneous (STZβ = 0.227, P = 0.026; STZβ = 0.274, P = 0.006, respectively) adipose tissues. There were no significant associations between plasma fatty acids and FTO mRNA expression in either subcutaneous or visceral adipose tissues. Conclusions The association of dietary total fatty acids, MUFA, and PUFA with FTO gene expression in both adipose tissues highlight the importance of dietary fatty acids composition along with total fat intake in relation to FTO gene expression. Funding Sources This study was funded by Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.


2021 ◽  
Vol 14 (1) ◽  
pp. 105-111
Author(s):  
Pulo RS Banjarnahor ◽  
Sutji Pratiwi Rahardjo ◽  
Eka Savitri ◽  
Mochammad Hatta ◽  
FX Budhianto Suhadi ◽  
...  

Nasopharyngeal cancer is the fifth most severe malignant disease in the head and neck in the human body. The main treatment is chemoradio therapy. The protein gene 53 (p53) is a tumor suppressor gene. YinYang1 (YY1) is a transcription factor having an important role in cell cycle control. YY1 can function as an activator, suppressor or initiator of the gene transcription process. This research aims to see the relationship between p53 mRNA gene expression and YY1 mRNA gene expression on the NPC TNM Stage. Materials andmethods cross-sectional research at 20 WHO type 3 NPC in which 3 samples after chemoradiotherapy, 17 non-chemoradio therapy samples consisted of 8 stage two samples, 7 stage three samples and 2 stage four samples. With RT-PCR, YY1 mRNA gene expression and p53 mRNA gene expression were measured, then the T-test was independent of the average chemoradio therapy group. It was concluded, at a higher NPC stage, the level of YY1 mRNA gene expression was relatively higher while p53 expression was lower. Post-chemoradio therapy levels of p53 mRNA gene expression were higher and YY1 expression was lower than in the non-chemoradio therapy group.


2018 ◽  
Author(s):  
Golaleh Asghari ◽  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  

2006 ◽  
Vol 82 (6) ◽  
pp. 877-887 ◽  
Author(s):  
J. Sehm ◽  
H. Lindermayer ◽  
H. H. D. Meyer ◽  
M. W. Pfaffl

Flavan-3-ols are a class of flavonoids that are widely distributed in fruits and beverages including red wine and apples. Consumption of flavanoid-rich food has been shown to exhibit anti-microbial, anti-oxidative, anti-inflammatory, and immune-modulating effects. To test the nutritional effects of flavanols on mRNA gene-expression of inflammatory and apoptotic marker genes, piglets were given two flavanoids-rich feeding regimens: a low flavanoid standard diet (SD) was compared with diets enriched with 3·5% apple pomace (APD) or 3·5% red-wine pomace (RWPD). The influence on mRNA expression levels was investigated in different immunological active tissues and in the gastro-intestinal tract (GIT). The investigation took place from 1 week prior weaning to 19 days post weaning in 78 piglets. The expression of expressed marker genes was determinate by one-step quantitative real-time (qRT-PCR): TNFα, NFκB as pro-inflammatory; IL10, as anti-inflammatory; caspase 3 as apoptosis; cyclin D1 as cell cycle marker; and nucleosome component histon H3 as reference gene.The feeding regimens result in tissue individual regulation of mRNA gene expression in all investigated organs. It was discovered that there were significant differences between the applied diets and significant changes during feeding time curse. Both pomace treatments caused a significant up-regulation of all investigated genes in liver. The effect on mesenterial lymph nodes and spleen was not prominent. In the GIT, the treatment groups showed a inhibitory effects on gene expression mainly in stomach and jejunum (NFκB, cyclin D1 and caspase 3). In colon the trend of caspase 3 was positive with the greatest change in the RWPD group.In jejunum and stomach the cell cycle turn over was reduced, whereas in liver the cell turn over was highly accelerate. The influence on inflammatory marker gene expression is mainly relevant in stomach. It is presume that both flavanoid rich feeding regimens have the potential to modulate the mRNA expressions of inflammatory, proliferation and apoptotic marker genes in the GIT and piglet organs.


2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Sarah Wilson ◽  
Tianli Zhu ◽  
Rajesh Khanna ◽  
Michael Pritz

AbstractGene expression was investigated in the major brain subdivisions (telencephalon, diencephalon, midbrain and hindbrain) in a representative reptile, Alligator mississipiensis, during the later stages of embryonic development. The following genes were examined: voltage-gated sodium channel isoforms: NaV1.1 and NaV1.2; synaptic vesicle 2a (SV2a); synaptophysin; and calbindin 2. With the exception of synaptophysin, which was only expressed in the telencephalon, all genes were expressed in all brain regions sampled at the time periods examined. For NaV1.1, gene expression varied according to brain area sampled. When compared with NaV1.1, the pattern of NaV1.2 gene expression differed appreciably. The gene expression of SV2a was the most robust of any of the genes examined. Of the other genes examined, although differences were noted, no statistically significant changes were found either between brain part or time interval. Although limited, the present analysis is the first quantitative mRNA gene expression study in any reptile during development. Together with future experiments of a similar nature, the present gene expression results should determine which genes are expressed in major brain areas at which times during development in Alligator. When compared with other amniotes, these results will prove useful for determining how gene expression during development influences adult brain structure.


Sign in / Sign up

Export Citation Format

Share Document