Targeting protein kinase C by Enzastaurin restrains proliferation and secretion in human pancreatic endocrine tumors

2011 ◽  
Vol 18 (4) ◽  
pp. 439-450 ◽  
Author(s):  
Daniela Molè ◽  
Teresa Gagliano ◽  
Erica Gentilin ◽  
Federico Tagliati ◽  
Claudio Pasquali ◽  
...  

Dysregulation of the protein kinase C (PKC) signaling pathway has been implicated in tumor progression. In this study, we investigate the effects of a PKC inhibitor, Enzastaurin, in human pancreatic neuroendocrine neoplasms (PNN) primary cultures and in the human pancreatic endocrine cancer cell line, BON1. To this aim six human PNN dispersed in primary cultures and BON1 cells were treated without or with 1–10 μM Enzastaurin and/or 100 nM IGF1 in the presence or absence of serum. Cell viability and apoptosis were evaluated after 48–72 h; Chromogranin A (CgA) and/or insulin secretion was assessed after 6 h of incubation. PKC expression was investigated by immunofluorescence and western blot. We found that Enzastaurin significantly reduced human PNN primary culture cell viability, as well as CgA and insulin secretion. Moreover, in the BON1 cell line Enzastaurin inhibited cell proliferation at 5 and 10 μM by inducing caspase-mediated apoptosis, and reduced phosphorylation of glycogen synthetase kinase 3β (GSK3β) and of Akt, both downstream targets of PKC pathway and pharmacodynamic markers for Enzastaurin. In addition, Enzastaurin blocked the stimulatory effect of IGF1 on cell proliferation, and reduced CgA expression and secretion in BON1 cells. Two different PKC isoforms are expressed at different levels and have partially different subcellular localization in BON1 cells. In conclusion, Enzastaurin reduces cell proliferation by inducing apoptosis, with a mechanism likely involving GSK3β signaling, and inhibits secretory activity in PNN in vitro models, suggesting that Enzastaurin might represent a possible medical treatment of human PNN.

Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2088-2098 ◽  
Author(s):  
Daniela Molè ◽  
Erica Gentilin ◽  
Teresa Gagliano ◽  
Federico Tagliati ◽  
Marta Bondanelli ◽  
...  

We investigate the role of protein kinase C (PKC) in the control of medullary thyroid carcinoma (MTC) cell proliferation by a PKC inhibitor, Enzastaurin, in human MTC primary cultures and in the TT cell line. We found that PKC inhibition reduces cell proliferation by inducing caspase-mediated apoptosis and blocks the stimulatory effect of IGF-I on calcitonin secretion. Enzastaurin reduces PKCβII (Thr500) phosphorylation, indicating a direct involvement of this isoform as well as the phosphorylated levels of Akt (Ser 473) and glycogen synthase kinase (Ser9), PKC pathway downstream targets and pharmacodynamic markers for PKC inhibition. PKCβII and PKCδ enzyme isoforms expression and localization were investigated. These data indicate that in vitro PKC is involved in the control of human MTC proliferation and survival by modulating apoptosis, with a mechanism that implicates PKCβII inhibition and translocation in different subcellular compartments. Targeting PKC may represent a useful therapeutic approach for controlling MTC proliferation.


Bone ◽  
1996 ◽  
Vol 18 (1) ◽  
pp. 59-65 ◽  
Author(s):  
M. Sabatini ◽  
C. Lesur ◽  
M. Pacherie ◽  
P. Pastoureau ◽  
N. Kucharczyk ◽  
...  

2006 ◽  
Vol 207 (3) ◽  
pp. 668-674 ◽  
Author(s):  
Hui-Sheng Liu ◽  
Zhi-Tao Hu ◽  
Ke-Ming Zhou ◽  
Ya-Ming Jiu ◽  
Hua Yang ◽  
...  

2001 ◽  
pp. 651-658 ◽  
Author(s):  
C Grundker ◽  
L Schlotawa ◽  
V Viereck ◽  
G Emons

OBJECTIVE: The expression of luteinizing hormone-releasing hormone (LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumours, including cancers of the endometrium. The signalling pathway through which LHRH acts in endometrial cancer is distinct from that in pituitary gonadotrophs. The LHRH receptor interacts with the mitogenic signal transduction of growth factor receptors via activation of a phosphotyrosine phosphatase, resulting in down-regulation of cancer cell proliferation. In addition, LHRH activates nucleus factor kappaB (NFkappaB) and protects the cancer cells from apoptosis. This study was conducted to investigate additional signalling mechanisms of the LHRH receptor cooperating with NFkappaB in endometrial cancer cells. DESIGN: The LHRH agonist triptorelin-induced activator protein-1 (AP-1) activation was analysed using a pAP-1-SEAP reporter gene assay. Expression of c-jun mRNA was quantified using quantitative reverse transcription (RT)-PCR. c-Jun N-terminal kinase (JNK) activity was measured by quantification of phosphorylated c-Jun protein. RESULTS: Treatment of Ishikawa and Hec-1A human endometrial cancer cells with 100 nM triptorelin resulted in a 3.1-fold and 3.5-fold activation of AP-1 respectively (P<0.05). If the cells had been made quiescent, treatment with triptorelin (100 nM) resulted in a 41.7-fold and 48.6-fold increase of AP-1 activation respectively (P<0.001). This effect was completely blocked by simultaneous treatment with pertussis toxin (PTX). A 17.6-fold and 17.3-fold increase of c-jun mRNA expression respectively (P<0.001) was obtained after 20 min of stimulation with triptorelin (100 nM). Treatment with 1 nM triptorelin resulted in a 12.5-fold or an 11.9-fold increase, and treatment with 10 pM triptorelin resulted in a 6.5-fold or a 5.2-fold increase of maximal c-jun mRNA expression respectively (P<0.001). Maximal c-Jun phosphorylation (68.5-fold and 60.2-fold, respectively, P<0.001) was obtained after 90 min incubation with triptorelin (100 nM). CONCLUSIONS: These results suggest that the LHRH agonist triptorelin stimulates the activity of AP-1 in human endometrial cancer cells mediated through PTX-sensitive G-protein alphai. In addition, triptorelin activates JNK, known to activate AP-1. In earlier investigations we have shown that triptorelin does not activate phospholipase and protein kinase C (PKC) in endometrial cancer cells. In addition, it has been demonstrated that triptorelin inhibits growth factor-induced mitogen activated protein kinase (MAPK, ERK) activity. Thus triptorelin-induced activation of the JNK/AP-1 pathway in endometrial cancer cells is independent of the known AP-1 activators, PKC or MAPK (ERK).


Sign in / Sign up

Export Citation Format

Share Document