scholarly journals Identification of gene pathways altered by deletion of the androgen receptor specifically in mineralizing osteoblasts and osteocytes in mice

2012 ◽  
Vol 49 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Patricia K Russell ◽  
Michele V Clarke ◽  
Jarrod P Skinner ◽  
Tammy P S Pang ◽  
Jeffrey D Zajac ◽  
...  

Androgens play a key role in skeletal growth and maintenance in males and can mediate their actions, at least in part, via the androgen receptor (AR) in osteoblasts. To investigate the mechanisms by which androgens exert their effects via the AR in mineralizing osteoblasts and osteocytes, we identified gene targets/pathways regulated by the AR using targeted gene expression and microarray approaches on bone isolated from mice in which the AR is specifically deleted in mineralizing osteoblasts and osteocytes (mOBL-ARKOs). Gene ontology mining indicated a number of biological processes to be affected in the bones of mOBL-ARKOs including skeletal and muscular system development and carbohydrate metabolism. All genes identified to have altered expression in the bones of mOBL-ARKOs were confirmed by Q-PCR for their androgen responsiveness in an androgen deprivation and replacement mouse model. The osteoblast genes Col1a1 and Bglap and the osteoclast genes Ctsk and RANKL (Tnfs11) were upregulated in the bones of mOBL-ARKOs, consistent with the increased matrix synthesis, mineralization, and bone resorption observed previously in these mice. Of significant interest, we identified genes involved in carbohydrate metabolism (adiponectin and Dpp4) and in growth and development (GH, Tgfb (Tgfb2), Wnt4) as potential targets of androgen action via the AR in mineralizing osteoblasts.

Author(s):  
Sergey Babanov

The article covers the particular features of the neuro-muscular system in vibration disease of various types and severity by electroneuromyographical tests at the Department of Occupational Disorders, Regional Center for Occupational Disorders, Samara Medical and Sanitary Unit № 5 of the Kirov Region (State Budgetary Healthcare Institution of the Samara Region). Changes in excitability and functional mobility of the sensorimotor system, development of vegetative-sensory polyneuropathy depending on the vibration disease type, severity, and the length of exposure to vibration at work are found in vibration disease patients.


2002 ◽  
Vol 20 (6) ◽  
pp. 326-330 ◽  
Author(s):  
Takashi Sato ◽  
Hirotaka Kawano ◽  
Shigeaki Kato

2011 ◽  
Vol 32 (6) ◽  
pp. 711-717 ◽  
Author(s):  
P. Sipila ◽  
A. Krutskikh ◽  
D. A. Pujianto ◽  
M. Poutanen ◽  
I. Huhtaniemi

2016 ◽  
Vol 38 (5) ◽  
pp. 375-383 ◽  
Author(s):  
Jessica J. DeWitt ◽  
Patrick M. Hecht ◽  
Nicole Grepo ◽  
Brent Wilkinson ◽  
Oleg V. Evgrafov ◽  
...  

The long noncoding RNA MSNP1AS (moesin pseudogene 1, antisense) is a functional element that was previously associated with autism spectrum disorder (ASD) with genome-wide significance. Expression of MSNP1AS was increased 12-fold in the cerebral cortex of individuals with ASD and 22-fold in individuals with a genome-wide significantly associated ASD genetic marker on chromosome 5p14.1. Overexpression of MSNP1AS in human neuronal cells caused decreased expression of moesin protein, which is involved in neuronal process stability. In this study, we hypothesize that MSNP1AS knockdown impacts global transcriptome levels. We transfected the human neural progenitor cell line SK- N-SH with constructs that caused a 50% suppression of MSNP1AS expression. After 24 h, cells were harvested for total RNA isolation. Strand-specific RNA sequencing analysis indicated altered expression of 1,352 genes, including altered expression of 318 genes following correction for multiple comparisons. Expression of the OAS2 gene was increased >150-fold, a result that was validated by quantitative PCR. Gene ontology analysis of the 318 genes with altered expression following correction for multiple comparisons indicated that upregulated genes were significantly enriched for genes involved in immune response, and downregulated genes were significantly enriched for genes involved in chromatin remodeling. These data indicate multiple transcriptional and translational functions of MSNP1AS that impact ASD-relevant biological processes. Chromatin remodeling and immune response are biological processes implicated by genes with rare mutations associated with ASD. Our data suggest that the functional elements implicated by association of common genetic variants impact the same biological processes, suggesting a possible shared common molecular pathway of ASD.


2020 ◽  
Vol 65 (2) ◽  
pp. R19-R33
Author(s):  
Dimitrios Doultsinos ◽  
Ian Mills

Prostate cancer is a high-incidence male cancer, which is dependent on the activity of a nuclear hormone receptor, the androgen receptor (AR). Since the AR is required for both normal prostate gland development and for prostate cancer progression, it is possible that prostate cancer evolves from perturbations in AR-dependent biological processes that sustain specialist glandular functions. The archetypal example of course is the use of prostate specific antigen (PSA), an organ-type specific component of the normal prostate secretome, as a biomarker of prostate cancer. Furthermore, localised prostate cancer is characterised by a low proliferative index and a heterogenous array of somatic mutations aligned to a multifocal disease pattern. We and others have identified a number of biological processes that are AR dependent and represent aberrations in significant glandular processes. Glands are characterised by high rates of metabolic activity including protein synthesis supported by co-dependent processes such as glycosylation, organelle biogenesis and vesicle trafficking. Impairments in anabolic metabolism and in protein folding/processing will inevitably impose proteotoxic and oxidative stress on glandular cells and, in particular, luminal epithelial cells for which secretion is their primary function. As cancer develops there is also significant metabolic dysregulation including impaired negative feedback effects on glycolytic and anabolic activity under conditions of hypoxia and heightened protein synthesis due to dysregulated PI 3-kinase/mTOR activity. In this review we will focus on the components of the AR regulome that support cancer development as well as glandular functions focussing on the unfolded protein response and on regulators of mTOR activity.


2009 ◽  
Vol 94 (1) ◽  
pp. 277-284 ◽  
Author(s):  
Ilpo T. Huhtaniemi ◽  
Stephen R. Pye ◽  
Kate L. Limer ◽  
Wendy Thomson ◽  
Terence W. O'Neill ◽  
...  

2019 ◽  
Vol 20 (7) ◽  
pp. 1715 ◽  
Author(s):  
Holger Jahr ◽  
Seval Gunes ◽  
Annika-Ricarda Kuhn ◽  
Sven Nebelung ◽  
Thomas Pufe

Culturing articular chondrocytes under physiological oxygen tension exerts positive effects on their extracellular matrix synthesis. The underlying molecular mechanisms which enhance the chondrocytic phenotype are, however, still insufficiently elucidated. The TGF-β superfamily of growth factors, and the prototypic TGF-β isoforms in particular, are crucial in maintaining matrix homeostasis of these cells. We employed a feedback-controlled table-top bioreactor to investigate the role of TGF-β in microtissues of human chondrocytes over a wider range of physiological oxygen tensions (i.e., physoxia). We compared 1%, 2.5%, and 5% of partial oxygen pressure (pO2) to the ‘normoxic’ 20%. We confirmed physoxic conditions through the induction of marker genes (PHD3, VEGF) and oxygen tension-dependent chondrocytic markers (SOX9, COL2A1). We identified 2.5% pO2 as an oxygen tension optimally improving chondrocytic marker expression (ACAN, COL2A1), while suppressing de-differentiation markers (COL1A1, COL3A1). Expression of TGF-β isoform 2 (TGFB2) was, relatively, most responsive to 2.5% pO2, while all three isoforms were induced by physoxia. We found TGF-β receptors ALK1 and ALK5 to be regulated by oxygen tension on the mRNA and protein level. In addition, expression of type III co-receptors betaglycan and endoglin appeared to be regulated by oxygen tension as well. R-Smad signaling confirmed that physoxia divergently regulated phosphorylation of Smad1/5/8 and Smad2/3. Pharmacological inhibition of canonical ALK5-mediated signaling abrogated physoxia-induced COL2A1 and PAI-1 expression. Physoxia altered expression of hypertrophy markers and that of matrix metalloproteases and their activity, as well as expression ratios of specific proteins (Sp)/Krüppel-like transcription factor family members SP1 and SP3, proving a molecular concept of ECM marker regulation. Keeping oxygen levels tightly balanced within a physiological range is important for optimal chondrocytic marker expression. Our study provides novel insights into transcriptional regulations in chondrocytes under physoxic in vitro conditions and may contribute to improving future cell-based articular cartilage repair strategies.


2014 ◽  
Vol 21 (4) ◽  
pp. T105-T118 ◽  
Author(s):  
Christine Helsen ◽  
Thomas Van den Broeck ◽  
Arnout Voet ◽  
Stefan Prekovic ◽  
Hendrik Van Poppel ◽  
...  

Androgen deprivation is the mainstay therapy for metastatic prostate cancer (PCa). Another way of suppressing androgen receptor (AR) signaling is via AR antagonists or antiandrogens. Despite being frequently prescribed in clinical practice, there is conflicting evidence concerning the role of AR antagonists in the management of PCa. In the castration-resistant settings of PCa, docetaxel has been the only treatment option for decades. With recent evidence that castration-resistant PCa is far from AR-independent, there has been an increasing interest in developing new AR antagonists. This review gives a concise overview of the clinically available antiandrogens and the experimental AR antagonists that tackle androgen action with a different approach.


The Prostate ◽  
2004 ◽  
Vol 62 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Dacheng Ding ◽  
Lihua Xu ◽  
Mani Menon ◽  
G. Prem Veer Reddy ◽  
Evelyn R. Barrack

Sign in / Sign up

Export Citation Format

Share Document