scholarly journals Estrogen deprivation in primate pregnancy leads to insulin resistance in offspring

2016 ◽  
Vol 230 (2) ◽  
pp. 171-183 ◽  
Author(s):  
Adina Maniu ◽  
Graham W Aberdeen ◽  
Terrie J Lynch ◽  
Jerry L Nadler ◽  
Soon O K Kim ◽  
...  

This study tested the hypothesis that estrogen programs mechanisms within the primate fetus that promote insulin sensitivity and glucose homeostasis in offspring. Glucose tolerance tests were performed longitudinally in prepubertal offspring of baboons untreated or treated on days 100 to 165/175 of gestation (term is 184 days) with the aromatase inhibitor letrozole, which decreased fetal estradiol levels by 95%. Basal plasma insulin levels were over two-fold greater in offspring delivered to letrozole-treated than untreated animals. Moreover, the peak 1min, average of the 1, 3, and 5min, and area under the curve blood glucose and plasma insulin levels after an i.v. bolus of glucose were greater (P<0.05 and P<0.01, respectively) in offspring deprived of estrogen in utero than in untreated animals and partially or completely restored in letrozole plus estradiol-treated baboons. The value for the homeostasis model assessment of insulin resistance was 2.5-fold greater (P<0.02) and quantitative insulin sensitivity check index lower (P<0.01) in offspring of letrozole-treated versus untreated animals and returned to almost normal in letrozole plus estradiol-treated animals. The exaggerated rise in glucose and insulin levels after glucose challenge in baboon offspring deprived of estrogen in utero indicates that pancreatic beta cells had the capacity to secrete insulin, but that peripheral glucose uptake and/or metabolism were impaired, indicative of insulin resistance and glucose intolerance. We propose that estrogen normally programs mechanisms in utero within the developing primate fetus that lead to insulin sensitivity, normal glucose tolerance, and the capacity to metabolize glucose after birth.

1979 ◽  
Vol 8 (2) ◽  
pp. 65-74 ◽  
Author(s):  
W. S. SOERJODIBROTO ◽  
C. R. C. HEARD ◽  
A. N. EXTON-SMITH

1993 ◽  
Vol 71 (12) ◽  
pp. 931-937 ◽  
Author(s):  
Christine Jean ◽  
Gilles Tancrède ◽  
André Nadeau

Physical training increases insulin sensitivity by mechanisms not yet fully understood. Because exercise also modulates adrenergic system activity, the present study was designed to ascertain whether the improved glucose homeostasis observed in trained rats is influenced by epinephrine secretion from the adrenal medullae. Male Wistar rats previously submitted to adrenal demedullation or sham operated were kept sedentary or trained on a treadmill over a 10-week period. An intravenous glucose tolerance test (IVGTT) was done 64 h after the last bout of exercise. Basal plasma glucose levels were reduced by physical training (p < 0.005) and by adrenal demedullation (p < 0.001). Adrenodemedullated rats had lower (p < 0.005) plasma glucose levels than sham-operated animals over the whole glucose tolerance curve. Trained animals had lower (p < 0.01) plasma glucose levels than sedentary rats throughout the IVGTT, except at 45 min. The glucose disappearance rate measured after the glucose bolus injection was increased by training (p < 0.05), whereas it was not modified by adrenal demedullation. Basal plasma insulin levels were reduced (p < 0.001) by physical training but unaffected by adrenal demedullation. During the IVGTT, adrenodemedullated rats had higher (p < 0.01) plasma insulin levels at 2, 4, and 6 min, whereas trained animals had lower (p < 0.05) plasma insulin levels throughout the test. Moreover, insulin in adrenodemedullated and trained rats had returned to basal levels at 30 min. The area under the curve for insulin was diminished by physical training (p < 0.001) but was not modified by adrenal demedullation. In the basal state and during the IVGTT, the sedentary adrenodemedullated rats had higher (p < 0.05) plasma glucagon levels compared with the other groups of animals. Pancreatic insulin content was not modified by adrenal demedullation but was diminished (p < 0.01) by physical training. The pancreatic glucagon content was not altered by adrenal demedullation or physical training. Because adrenal demedullation abolished the exercise-induced increase in epinephrine secretion, the results of the present study suggest that the enhanced insulin sensitivity induced by physical training is not caused by an increase in epinephrine secretion from the adrenal medullae.Key words: adrenal demedullation, physical training, glucose tolerance, insulin sensitivity, catecholamines.


1983 ◽  
Vol 245 (6) ◽  
pp. E575-E581 ◽  
Author(s):  
A. L. Vallerand ◽  
J. Lupien ◽  
L. J. Bukowiecki

The metabolic interactions of cold exposure, cold acclimation, and starvation on glucose tolerance and plasma insulin levels were studied in precannulated, unrestrained, and unanesthetized rats. Cold exposure (48 h at 5 degrees C) significantly reduced the insulin response to intravenous glucose injection (P less than 0.01) while improving glucose tolerance (P less than 0.01). Starvation (48 h at 25 degrees C) also reduced the insulin response (P less than 0.01) but did not significantly alter glucose tolerance. “Accelerated starvation” induced by starving rats for 48 h at 5 degrees C dramatically reduced both basal and glucose-stimulated insulin levels while even improving glucose tolerance, resulting in a 15-fold reduction in the insulinogenic index. Cold acclimation (3 wk at 5 degrees C) induced essentially the same alterations as cold exposure. Approximately reversed changes were observed when cold-acclimated rats were returned to a warm environment for 15–18 h. Results from these studies indicate that 1) cold exposure and starvation, but not cold acclimation, act synergistically in decreasing the sensitivity and/or the capacity of pancreatic islets for secreting insulin in response to glucose stimulation; 2) glucose tolerance and possibly insulin sensitivity of peripheral tissues are enhanced by cold exposure and starvation, although glucose tolerance is improved by cold exposure only, not by starvation; 3) an improved glucose tolerance with barely detectable plasma insulin levels was obtained in cold-starved rats under normal physiological conditions.


PLoS ONE ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. e0227105
Author(s):  
Gustavo Roberto Villas Boas ◽  
João Marcos Rodrigues Lemos ◽  
Matheus William de Oliveira ◽  
Rafael Claudino dos Santos ◽  
Ana Paula Stefanello da Silveira ◽  
...  

2012 ◽  
Vol 11 (1) ◽  
pp. 80 ◽  
Author(s):  
Toshitaka Muneyuki ◽  
Kei Nakajima ◽  
Atsushi Aoki ◽  
Masashi Yoshida ◽  
Hiroshi Fuchigami ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ezarul Faradianna Lokman ◽  
Harvest F. Gu ◽  
Wan Nazaimoon Wan Mohamud ◽  
Claes-Göran Östenson

Aims. To evaluate the antidiabetic effects ofGynostemma pentaphyllum(GP) in Goto-Kakizaki (GK) rat, an animal model of type 2 diabetes, and to investigate the mechanisms of insulin release.Methods. Oral glucose tolerance test was performed and plasma insulin levels were measured.Results. An oral treatment withGP(0.3 g/kg of body weight daily) for two weeks in GK rats improved glucose tolerance versus placebo group (P<0.01). Plasma insulin levels were significantly increased in theGP-treated group. The insulin release fromGP-treated GK rats was 1.9-fold higher as compared to the control group (P<0.001).GPstimulated insulin release in isolated GK rat islets at high glucose. Opening of ATP-sensitive potassium (K-ATP) channels by diazoxide and inhibition of calcium channels by nifedipine significantly decreased insulin response toGP. Furthermore, the protein kinase A (PKA) inhibitor H89 decreased the insulin response toGP(P<0.05). In addition,GP-induced insulin secretion was decreased after preincubation of GK islets with pertussis toxin to inhibit exocytoticGeproteins (P<0.05).Conclusion.The antidiabetic effect ofGPis associated with the stimulation of insulin release from the islets.GP-induced insulin release is partly mediated via K-ATP and L-type Ca2+channels, the PKA system and also dependent on pertussis toxin sensitiveGe-protein.


2017 ◽  
Vol 43 (4) ◽  
pp. 1689-1702 ◽  
Author(s):  
Peddanna Kotha ◽  
Kameswara Rao Badri ◽  
Ramya Nagalapuram ◽  
Rajasekhar Allagadda ◽  
Appa Rao Chippada

Background/Aims: Diabetes mellitus is a pandemic metabolic disorder that is affecting a majority of populations in recent years. There is a requirement for new drugs that are safer and cheaper due to the side effects associated with the available medications. Methods: We investigated the anti-diabetic activity of leaves of Anisomeles malabarica following bioactivity guided fractionation. The different solvent (hexane, ethyl acetate, methanol and water) extracts of A. malabarica leaves were used in acute treatment studies to evaluate and identify the active fraction. The ethyl acetate extract was subjected to further fractionation using silica gel column chromatography and the compounds were identified by LC-SRM/MS and GC-MS. Additional chronic treatment studies were carried out using this active fraction (AMAF) for 30 days in experimental diabetic rats. Fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), plasma insulin levels and glucose tolerance were measured along with insulin resistance/sensitivity indicators (HOMA-IR, HOMA-β and QUICKI) to assess the beneficial effects of A. malabarica in the management of diabetes mellitus. Results: Among the different solvent extracts tested, ethyl acetate extract showed maximum (66%) anti-hyperglycemic activity. The hexane and ethyl acetate (1: 1) fraction that has maximum anti-diabetic activity was identified as active fraction of A. malabarica (AMAF). The FBG, HbA1c, plasma insulin levels and insulin sensitivity/resistance indicators such as glucose tolerance, HOMA-IR, HOMA-β and QUICKI were significantly improved to near normal in diabetic rats treated with AMAF. Further, we identified key flavonoids and fatty acids as the anti-diabetic active principles from the AMAF of A. malabarica leaves. Conclusion: The results of our study suggest that Anisomeles malabarica has potential anti-diabetic activity in STZ induced diabetic rats.


Sign in / Sign up

Export Citation Format

Share Document