scholarly journals Norepinephrine exposure restrains endometrial decidualization in early pregnancy

2021 ◽  
Author(s):  
Jiju Wang ◽  
Yuhui Tang ◽  
Songcun Wang ◽  
Liyuan Cui ◽  
Da-Jin Li ◽  
...  

Previous studies have focused on the role of norepinephrine on arrhythmias, generalized anxiety disorder, and cancer. This study aimed to investigate the effect of norepinephrine on endometrial decidualization. Artificial decidualization and norepinephrine-treated mice were established in vivo. In vitro, human endometrial stromal cells were treated with MPA and cAMP to induce decidualization. Decidual markers and important signaling molecules during decidualization were detected using quantitative real-time polymerase chain reaction and Western blot. RNA sequencing was performed to determine related signaling pathways. Exposure of excess norepinephrine significantly restricted the induced expression of decidualized markers Dtprp, BMP2, WNT4, and Hand2 in mice. In vitro, 10 µM norepinephrine markedly downregulated the expressions of prolactin, IGFBP1, and PLZF, which are the specifical markers of decidual stromal cells during decidualization. The gene set enrichment analysis showed that a significant enrichment in neuroactive ligand–receptor interactions of norepinephrine treatment group. The α1b-adrenergic receptor expression was upregulated by norepinephrine. Interestingly, norepinephrine did not inhibit the expression of IGFBP1 in endometrial stromal cells after silencing α1b-adrenergic receptor, while significantly suppressed the induced decidualization with overexpression of α1b-adrenergic receptor. When α1b-adrenergic receptor was activated, endometrial p-PKC was significantly increased under post-treatment with norepinephrine in vivo and in vitro. In addition, norepinephrine treatment inhibited embryo and fetal development using a normal pregnancy model. Therefore, norepinephrine exposure inhibited endometrial decidualization through the activation of the PKC signaling pathway by upregulating α1b-adrenergic receptor. Our study could explain some female reproductive problems due to stress and provide some novel strategies for this disorder.

Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


2021 ◽  
Author(s):  
Longhua Feng ◽  
Pengjiang Cheng ◽  
Zhengyun Feng ◽  
Xiaoyu Zhang

Abstract Background: To investigate the role of transmembrane p24 trafficking protein 2 (TMED2) in lung adenocarcinoma (LUAD) and determine whether TMED2 knockdown could inhibit LUAD in vitro and in vivo.Methods: TIMER2.0, Kaplan-Meier plotter, gene set enrichment analysis (GSEA), Target Gene, and pan-cancer systems were used to predict the potential function of TMED2. Western blotting and immunohistochemistry were performed to analyze TMED2 expression in different tissues or cell lines. The proliferation, development, and apoptosis of LUAD were observed using a lentivirus-mediated TMED2 knockdown. Bioinformatics and western blot analysis of TMED2 against inflammation via the TLR4/NF-κB signaling pathway were conducted. Results: TMED2 expression in LUAD tumor tissues was higher than that in normal tissues and positively correlated with poor survival in lung cancer and negatively correlated with apoptosis in LUAD. The expression of TMED2 was higher in tumors or HCC827 cells. TMED2 knockdown inhibited LUAD development in vitro and in vivo and increased the levels of inflammatory factors via the TLR4/NF-κB signaling pathway. TMED2 was correlated with TME, immune score, TME-associated immune cells, their target markers, and some mechanisms and pathways, as determined using the TIMER2.0, GO, and KEGG assays.Conclusions: TMED2 may regulate inflammation in LUAD through the TLR4/NF-κB signaling pathway, and enhance the proliferation, development, and prognosis of LUAD by regulating inflammation, which provide a new strategy for treating LUAD by regulating inflammation.


2016 ◽  
Author(s):  
Claudia Hernandez-Armenta ◽  
David Ochoa ◽  
Emanuel Gonçalves ◽  
Julio Saez-Rodriguez ◽  
Pedro Beltrao

AbstractMotivationPhosphoproteomic experiments are increasingly used to study the changes in signalling occurring across different conditions. It has been proposed that changes in phosphorylation of kinase target sites can be used to infer when a kinase activity is under regulation. However, these approaches have not yet been benchmarked due to a lack of appropriate benchmarking strategies.ResultsWe curated public phosphoproteomic experiments to identify a gold standard dataset containing a total of 184 kinase-condition pairs where regulation is expected to occur. A list of kinase substrates was compiled and used to estimate changes in kinase activities using the following methods: Z-test, Kolmogorov Smirnov test, Wilcoxon rank sum test, gene set enrichment analysis (GSEA), and a multiple linear regression model (MLR). We also tested weighted variants of the Z-test, and GSEA that include information on kinase sequence specificity as proxy for affinity. Finally, we tested how the number of known substrates and the type of evidence (in vivo, in vitro or in silico) supporting these influence the predictions.ConclusionsMost models performed well with the Z-test and the GSEA performing best as determined by the area under the ROc curve (Mean AUC=0.722). Weighting kinase targets by the kinase target sequence preference improves the results only marginally. However, the number of known substrates and the evidence supporting the interactions has a strong effect on the predictions.


2011 ◽  
Vol 286 (41) ◽  
pp. 36063-36075 ◽  
Author(s):  
Christopher Cottingham ◽  
Yunjia Chen ◽  
Kai Jiao ◽  
Qin Wang

The neurobiological mechanisms of action underlying antidepressant drugs remain poorly understood. Desipramine (DMI) is an antidepressant classically characterized as an inhibitor of norepinephrine reuptake. Available evidence, however, suggests a mechanism more complex than simple reuptake inhibition. In the present study, we have characterized the direct interaction between DMI and the α2A-adrenergic receptor (α2AAR), a key regulator of noradrenergic neurotransmission with altered expression and function in depression. DMI alone was found to be sufficient to drive receptor internalization acutely and a robust down-regulation of α2AAR expression and signaling following prolonged stimulation in vitro. These effects are achieved through arrestin-biased regulation of the receptor, as DMI selectively induces recruitment of arrestin but not activation of heterotrimeric G proteins. Meanwhile, a physiologically relevant concentration of endogenous agonist (norepinephrine) was unable to sustain a down-regulation response. Prolonged in vivo administration of DMI resulted in significant down-regulation of synaptic α2AAR expression, a response that was lost in arrestin3-null animals. We contend that direct DMI-driven arrestin-mediated α2AAR down-regulation accounts for the therapeutically desirable but mechanistically unexplained adaptive alterations in receptor expression associated with this antidepressant. Our results provide novel insight into both the pharmacology of this antidepressant drug and the targeting of the α2AAR in depression.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunj. Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings: The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number Not applicable


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J Moyer ◽  
D Dunja Baston-Buest ◽  
G Wennemuth ◽  
A Bielfeld ◽  
R Grümmer

Abstract Study question Which compounds/compound combinations are most effective in decidualization induction of endometrial stromal cells (ESCs) of patients with and without endometriosis? Summary answer Combination of compounds addressing different steps in the signalling cascade of decidualization induce decidualization more effectively than application of the individual compounds alone. What is known already Decidualization is the monthly recurring differentiation process of the ESCs in preparation for embryo implantation in human. Undifferentiated ESCs reveal an increased potential to proliferate and invade after retrograde menstruation. This may lead to the formation of ectopic lesions and the manifestation of the chronic gynaecological disease of endometriosis due to an impairment of the decidualization process. Study design, size, duration Compounds and compound combinations addressing the progesterone receptor- or the cAMP-mediated pathway were evaluated with regard to their own and their synergistic potential to induce decidualization of ESCs from women with (n = 10) and without (n = 10) endometriosis during a 6-day treatment. Participants/materials, setting, methods Human primary ESCs were isolated via enzymatic-mechanic digestion from eutopic endometrium from women with and without endometriosis and treated for 6 days in vitro with different progestins (progesterone, medoxyprogesterone acetate (MPA)), 8-Br-cAMP, forskolin, or phosphodiesterase (PDE)-inhibitor (Rolipram) alone or in combination. The degree of decidualization induction was quantified by morphological, biochemical (prolactin) and molecular (HAND2, FOXO1) parameters by means of ELISA, flow cytometric analysis, Realtime PCR and Western blot analysis. Main results and the role of chance After 6 days of treatment, decidualization was induced by forskolin as well as by 8-Br-cAMP whereas progestins or PDE alone hardly induced prolactin secretion by ESCs as a marker of decidualization. A change of morphology from undifferentiated fibroblast-like cells to rounded cells could be observed in parallel with the secretion of prolactin. Forskolin and 8-Br-cAMP-induced decidualization was significantly enhanced by MPA but not by progesterone. These effects were similar in ESCs from women with and without endometriosis. Moreover, forskolin-induced decidualization was significantly enhanced by simultaneous application of PDE. Interestingly, this effect was higher in cells of patients with endometriosis. An induction of decidualization in ESCs was associated with a parallel increase of the process-associated transcription factors HAND2 and FOXO1. This rise of transcription was markedly increased in combination with MPA but not with progesterone. Limitations, reasons for caution Endometrial tissue was obtained from women undergoing infertility treatment and thus may differ from the endometrium of fertile women. Results obtained from primary cells in vitro may not cover the in vivo situation in all respects. Wider implications of the findings The results of this study provide baseline data for the development of a possible therapeutical approach to induce decidualization as a treatment option for endometriosis. Further research is required to determine the effectiveness of the in vitro tested compound combinations in an in vivo model. Trial registration number not applicable


Reproduction ◽  
2021 ◽  
Author(s):  
Liyuan Cui ◽  
Feng Xu ◽  
Songcun Wang ◽  
Zhuxuan Jiang ◽  
Lu Liu ◽  
...  

Deficient decidualization of endometrial stromal cells (ESCs) can cause adverse pregnancy outcomes including miscarriage, intrauterine growth restriction and pre-eclampsia. Decidualization is regulated by multiple factors such as hormones and circadian genes. Melatonin, a circadian-controlled hormone, is reported to be important for various reproductive process, including oocyte maturation and placenta development. Its receptor, MT1, is considered to be related to intrauterine growth restriction and pre-eclampsia. However, the role of melatonin-MT1 signal in decidualization remains unknown. Here, we reported that decidual stromal cells from miscarriages displayed deficient decidualization with decreased MT1 expression. The expression level of MT1 is gradually increased with the process of decidualization induction in vitro. MT1 knockdown suppressed decidualization level, while overexpression of MT1 promoted the decidualization process. Moreover, changing MT1 level could regulate the expression of decidualization-related transcription factor FOXO1. Melatonin promoted decidualization and reversed the decidualization deficiency due to MT1 knockdown. Using in vitro and in vivo experiments, we further identified that lipopolysaccharide (LPS) could induce inflammation and decidualization resistance with downregulated MT1 expression, and melatonin could reverse the inflammation and decidualization resistance induced by LPS. These results suggested melatonin-MT1 signal might be essential for decidualization and might provide a novel therapeutic target for decidualization deficiency-associated pregnancy complications.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Zhenlin Wang ◽  
Chenting Ying ◽  
Anke Zhang ◽  
Houshi Xu ◽  
Yang Jiang ◽  
...  

Abstract The hematopoietic cell kinase (HCK), a member of the Src family protein-tyrosine kinases (SFKs), is primarily expressed in cells of the myeloid and B lymphocyte lineages. Nevertheless, the roles of HCK in glioblastoma (GBM) remain to be examined. Thus, we aimed to investigate the effects of HCK on GBM development both in vitro and in vivo, as well as the underlying mechanism. The present study found that HCK was highly expressed in both tumor tissues from patients with GBM and cancer cell lines. HCK enhanced cell viability, proliferation, and migration, and induced cell apoptosis in vitro. Tumor xenografts results also demonstrated that HCK knockdown significantly inhibited tumor growth. Interestingly, gene set enrichment analysis (GSEA) showed HCK was closed associated with epithelial mesenchymal transition (EMT) and TGFβ signaling in GBM. In addition, we also found that HCK accentuates TGFβ-induced EMT, suggesting silencing HCK inhibited EMT through the inactivation of Smad signaling pathway. In conclusion, our findings indicated that HCK is involved in GBM progression via mediating EMT process, and may be served as a promising therapeutic target for GBM.


Author(s):  
Yu-Yuan Zhu ◽  
Yao Wu ◽  
Si-Ting Chen ◽  
Jin-Wen Kang ◽  
Ji-Min Pan ◽  
...  

High level of uric acid (UA) is the major origin of gout, and is highly associated with various pregnant complications, such as preeclampsia and gestational diabetes. However, UA’s level and role in the very early stage of pregnancy has not been uncovered. This study aims to investigate the relevance of serum UA and decidualization, an essential process for the establishment and maintenance of pregnancy in women and mice during the early stage of pregnancy. In this study, we first proved that expression level of UA synthase xanthine dehydrogenase (XDH) is highly increased along with decidualization of endometrial stromal cells in both in vitro and in vivo models. Furthermore, serum and endometrial levels of UA are higher in mice with decidualized uterin horn and in vitro decidualized stromal cells. The existence of monosodium urate (MSU) crystal was also confirmed by immunostaining. Next, the roles of MSU on decidualization were explored by both in vitro and in vivo models. Our data shows MSU crystal but not UA enhances the decidualization response of endometrial stromal cells, via the upregulation of inflammatory genes such Ptgs2 and Il11. inhibiting of Cox-2 activity abolishes MSU crystal induced higher expression of decidualization marker Prl8a2. At last, in women, we observed enriched expression of XDH in decidua compare to non-decidualized endometrium, the serum level of UA is significantly increased in women in very early stage of pregnancy, and drop down after elective abortion. In summary, we observed an increased serum UA level in the early stage of women’s pregnancy, and proved that the increased level of UA results from the expressed XDH in decidualizing endometrium of both human and mouse, leading to the formation of MSU crystal. MSU crystal can enhance the decidualization response via inflammatory pathways. Our study has uncovered the association between UA, MSU, and decidualization during the early stage of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document