scholarly journals Pancreas Pathology in Type 1 Diabetes: An evolving Story

2021 ◽  
Author(s):  
Sarah J Richardson ◽  
Alberto Pugliese

We review the current knowledge of pancreas pathology in type 1 diabetes. During the last two decades dedicated efforts towards the recovery of pancreas from deceased patients with type 1 diabetes have promoted significant advances in the characterization of the pathological changes associated with this condition. The implementation autoantibody screening among organ donors has also allowed examining pancreas pathology in the absence of clinical disease, but in the presence of serological markers of autoimmunity. The assessment of key features of pancreas pathology across various disease stages allows driving parallels with clinical disease stages. The main pathological abnormalities observed in the pancreas with type 1 diabetes are beta cell loss, insulitis, and more recently hyperexpression of HLA class I and class II molecules have been reproduced and validated. Additionally, there are changes affecting extracellular matrix components, evidence of viral infections, inflammation, and ER stress, which could contribute to beta cell dysfunction and the stimulation of apoptosis and autoimmunity. The increasing appreciation that beta cell loss can be less severe at diagnosis than previously estimated, the coexistence of beta cell dysfunction, and the persistence of key features of pancreas pathology for years after diagnosis impact the perception of the dynamics of this chronic process. The emerging information is helping identifying novel therapeutic targets and have implications for the design of clinical trials.

2020 ◽  
Vol 27 (4) ◽  
pp. 215-224 ◽  
Author(s):  
Emily K. Sims ◽  
Raghavendra G. Mirmira ◽  
Carmella Evans-Molina

2010 ◽  
Vol 29 (4) ◽  
pp. 435-436
Author(s):  
A Mari ◽  
V Nofrate ◽  
J.S Skyler ◽  
E Ferrannini ◽  

2019 ◽  
Vol 16 (7) ◽  
pp. 569-582
Author(s):  
Ernesto S. Nakayasu ◽  
Wei-Jun Qian ◽  
Carmella Evans-Molina ◽  
Raghavendra G. Mirmira ◽  
Decio L. Eizirik ◽  
...  

Author(s):  
Charanya Muralidharan ◽  
Amelia K Linnemann

Type 1 diabetes is an insulin-dependent, autoimmune disease where the pancreatic beta cells are destroyed resulting in hyperglycemia. This multi-factorial disease involves multiple environmental and genetic factors, and has no clear etiology. Accumulating evidence suggests that early signaling defects within the beta cells may promote a change in the local immune mileu, contributing to autoimmunity. Therefore, many studies have been focused on intrinsic beta cell mechanisms that aid in restoration of cellular homeostasis under environmental conditions that cause dysfunction. One of these intrinsic mechanisms to promote homeostasis is autophagy, defects in which are clearly linked with beta cell dysfunction in the context of type 2 diabetes. Recent studies have now also pointed towards beta cell autophagy defects in the context of type 1 diabetes. In this perspectives review, we will discuss the evidence supporting a role for beta cell autophagy in the pathogenesis of type 1 diabetes, including a potential role for unconventional secretion of autophagosomes/lysosomes in the changing dialogue between the beta cell and immune cells.


Diabetologia ◽  
2008 ◽  
Vol 52 (2) ◽  
pp. 336-346 ◽  
Author(s):  
E. Zini ◽  
M. Osto ◽  
M. Franchini ◽  
F. Guscetti ◽  
M. Y. Donath ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Pia Leete ◽  
Noel G. Morgan

Significant progress has been made in understanding the phenotypes of circulating immune cell sub-populations in human type 1 diabetes but much less is known about the equivalent populations that infiltrate the islets to cause beta-cell loss. In particular, considerable uncertainties remain about the phenotype and role of B-lymphocytes in the pancreas. This gap in understanding reflects both the difficulty in accessing the gland to study islet inflammation during disease progression and the fact that the number and proportion of islet-associated B-lymphocytes varies significantly according to the disease endotype. In very young children (especially those <7 years at onset) pancreatic islets are infiltrated by both CD8+ T- and CD20+ B-lymphocytes in roughly equal proportions but it is widely held that the CD8+ T-lymphocytes are responsible for driving beta-cell toxicity. By contrast, the role played by B-lymphocytes remains enigmatic. This is compounded by the fact that, in older children and teenagers (those ≥13 years at diagnosis) the proportion of B-lymphocytes found in association with inflamed islets is much reduced by comparison with those who are younger at diagnosis (reflecting two endotypes of disease) whereas CD8+ T-lymphocytes form the predominant population in both groups. In the present paper, we review the current state of understanding and develop a proposal to stimulate further discussion of the roles played by islet-associated B-lymphocytes in human type 1 diabetes. We cite evidence indicating that sites of direct contact can be found between CD8+ and CD20+-lymphocytes in and around inflamed islets and propose that such interactions may be important in determining the efficiency of beta cell killing.


2021 ◽  
Vol 11 ◽  
Author(s):  
Christine Bender ◽  
Sakthi Rajendran ◽  
Matthias G. von Herrath

Since the establishment of the network for pancreatic organ donors with diabetes (nPOD), we have gained unprecedented insight into the pathology of human type 1 diabetes. Many of the pre-existing “dogmas”, mostly derived from studies of animal models and sometimes limited human samples, have to be revised now. For example, we have learned that autoreactive CD8 T cells are present even in healthy individuals within the exocrine pancreas. Furthermore, their “attraction” to islets probably relies on beta-cell intrinsic events, such as the over-expression of MHC class I and resulting presentation of autoantigens such as (prepro)insulin. In addition, we are discovering other signs of beta-cell dysfunction, possibly at least in part due to stress, such as the over-expression of certain cytokines. This review summarizes the latest developments focusing on cytokines and autoreactive CD8 T cells in human type 1 diabetes pathogenesis.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 512
Author(s):  
Yong Kyung Kim ◽  
Lori Sussel ◽  
Howard W. Davidson

The pancreatic beta cell is a highly specialized cell type whose primary function is to secrete insulin in response to nutrients to maintain glucose homeostasis in the body. As such, the beta cell has developed unique metabolic characteristics to achieve functionality; in healthy beta cells, the majority of glucose-derived carbons are oxidized and enter the mitochondria in the form of pyruvate. The pyruvate is subsequently metabolized to induce mitochondrial ATP and trigger the downstream insulin secretion response. Thus, in beta cells, mitochondria play a pivotal role in regulating glucose stimulated insulin secretion (GSIS). In type 2 diabetes (T2D), mitochondrial impairment has been shown to play an important role in beta cell dysfunction and loss. In type 1 diabetes (T1D), autoimmunity is the primary trigger of beta cell loss; however, there is accumulating evidence that intrinsic mitochondrial defects could contribute to beta cell susceptibility during proinflammatory conditions. Furthermore, there is speculation that dysfunctional mitochondrial responses could contribute to the formation of autoantigens. In this review, we provide an overview of mitochondrial function in the beta cells, and discuss potential mechanisms by which mitochondrial dysfunction may contribute to T1D pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document