scholarly journals Role of sperm-surface glycoproteins in gamete recognition in two mouse species

Reproduction ◽  
1984 ◽  
Vol 70 (1) ◽  
pp. 281-284 ◽  
Author(s):  
H. Lambert
Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4121-4131 ◽  
Author(s):  
Q. Lu ◽  
B.D. Shur

A variety of sperm surface components have been suggested to mediate gamete recognition by binding to glycoside ligands on the egg coat glycoprotein ZP3. The function of each of these candidate receptors is based upon varying degrees of circumstantial and direct evidence; however, the effects on fertilization of targeted mutations in any of these candidate receptors have not yet been reported. In this paper, we describe the effects of targeted mutations in beta1,4-galactosyltransferase, the best studied of the candidate receptors for ZP3. Surprisingly, galactosyltransferase-null (gt[−/−]) males are fertile; however, sperm from gt(−/−) males bind less radiolabeled ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either ZP3 or anti-galactosyltransferase antibodies, as do wild-type sperm. In contrast, gt(−/−) sperm undergo the acrosome reaction normally in response to calcium ionophore, which bypasses the requirement for ZP3 binding. The inability of gt(−/−) sperm to undergo a ZP3-induced acrosome reaction renders them physiologically inferior to wild-type sperm, as assayed by their relative inability to penetrate the egg coat and fertilize the oocyte in vitro. Thus, although ZP3 binding and subsequent induction of the acrosome reaction are dispensable for fertilization, they impart a physiological advantage to the fertilizing sperm. A second strain of mice was created that is characterized by a loss of of the long galactosyltransferase isoform responsible for ZP3-dependent signal transduction, but which maintains normal levels of Golgi galactosylation. Sperm from these mice show that the defective sperm-egg interactions in gt(−/−) mice are due directly to a loss of the long galactosyltransferase isoform from the sperm surface and are independent of the state of intracellular galactosylation during spermatogenesis.


Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 259-270
Author(s):  
Stephen J. Gaunt

The rat sperm surface antigen 2D6, located over the entire surface of the spermatozoon, is shown by use of a monoclonal antibody in indirect immunofluorescence experiments to spread laterally over the surface of the egg after fusion of sperm and egg plasma membranes at fertilization. Freshly fertilized eggs, obtained from superovulated rats 14h after hCG injection, showed the 2D6 antigen to have spread in a gradient over a discrete fan-shaped area of the egg surface anterior to the protruding sperm tail. Eggs at a later stage of sperm incorporation, obtained 20 h after hCG injection, snowed that the spread of antigen had extended to cover most or all of their surfaces. By 40 h after hCG injection, the approximate time that fertilized eggs cleaved to form 2-cell embryos, most of the 2D6 antigen had been lost from the cell surface. Fertilized eggs, but not unfertilized eggs or 2-cell embryos, were lysed by 2D6 monoclonal antibody in the presence of guinea pig complement. A model for sperm-egg fusion is presented to account for the observed pattern of spreading shown by the 2D6 antigen. The possible role of sperm antigens on the egg surface is discussed.


1999 ◽  
Vol 82 (08) ◽  
pp. 365-376 ◽  
Author(s):  
Steve Watson

IntroductionThe extracellular matrix protein, collagen, plays a primary role in hemostasis. Collagen fibers provide an important site for adhesion of platelets to the exposed subendothelium, trapping them at the site of vascular damage and enabling the formation of a monolayer of cells over the damaged area. Collagen fibers also stimulate platelet activation, leading to inside-out regulation of the integrin glycoprotein (GP) IIb-IIIa (also known as αIIbβ3), secretion from dense and α granules, generation of thromboxanes, and expression of procoagulant activity, all of which support the hemostatic process. The role of collagen in supporting platelet adhesion to the subendothelium is mediated through indirect and direct interactions. The indirect interaction is mediated through von Willebrand factor (vWF), which binds to the GP Ib-IX-V complex on the platelet surface.1-3 The interaction with vWF is critical for platelet adhesion at medium to high rates of flow because of the fast rate of association between vWF and GP Ib-IX. The importance of this interaction is demonstrated by the severe bleeding problems experienced by individuals with functional impairment of vWF (von Willebrand disease) or GP Ib-IX (Bernard-Soulier syndrome). At low rates of flow, collagen fibers are able to support adhesion in the absence of vWF through a direct interaction with a number of platelet surface glycoproteins i.e. collagen receptors,4,5 this also serves to support vWF-dependent adhesion at higher rates of flow by preventing dissociation. Crosslinking of platelet surface glycoproteins by collagen also generates intracellular signals, leading to platelet activation.The number of proteins on the platelet surface proposed to be collagen receptors is approaching double figures, but it is generally accepted that the integrin GP Ia-IIa (also known as α2β1) and glycoprotein VI (GP VI) are among the most important of these, playing critical roles in adhesion and activation, respectively6 (Fig. 1). This is illustrated by the mild bleeding problems of patients with a low level of expression or the presence of autoantibodies to GP Ia-IIa and the spontaneous, severe bleeding episodes that are occasionally seen in patients whose platelets are deficient in GP VI.6 There is evidence, however, that other collagen receptors have supporting roles in adhesion and activation. For example, GP VI supports platelet adhesion to collagen7 and GP IV, also known as CD36, may also play a similar role.8 The role of the recently cloned collagen receptor p65 in adhesion is not known. Evidence that the interaction of collagen with receptors, such as GPIV and p65, is of less importance than for interactions with GP Ia-IIa, and GP VI is provided by the absence of individuals with bleeding problems caused by deficiencies in these proteins. This is illustrated most clearly for GP IV, which is absent in 3% to 5 % of the Japanese population, and yet such individuals display no major vascular problems.Due to the large number of glycoproteins that bind collagen on the platelet surface, it has been difficult to gain a full understanding of the role of individual collagen receptors in adhesion and activation responses. This is complicated further by the interactions between vWF and GP Ib-IX-V, vWF or fibrinogen to activated GP IIb-IIIa especially as both glycoprotein receptors generate intracellular signals. The relative importance of individual collagen receptors in adhesion also varies with the rate of flow and between collagen types. A full discussion of platelet adhesion to collagen is beyond the scope of this article, and the reader is referred to a number of excellent recent reviews for further information.4-6,9,10 The present chapter focuses on the signaling events generated by the activation (or more correctly crosslinking) of platelet surface glycoproteins by collagen and the implications that this has for platelet activation under normal and diseased conditions.


Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 725-735
Author(s):  
Julieta Gabriela Hamze ◽  
María Jiménez-Movilla ◽  
Raquel Romar

The role of specific zona pellucida (ZP) glycoproteins in gamete interaction has not yet been elucidated in many species. A recently developed 3D model based on magnetic sepharose beads (B) conjugated to recombinant ZP glycoproteins (BZP) and cumulus cells (CBZP) allows the study of isolated ZP proteins in gamete recognition studies. The objective of this work was to study the role of porcine ZP2, ZP3 and ZP4 proteins in sperm binding, cumulus cell adhesion and acrosome reaction triggering. ZP protein-bound beads were incubated with fresh ejaculated boar spermatozoa and isolated cumulus cells for 24 h. The number of sperm bound to the beads, the acrosomal shrouds (presence of acrosomal content) on the bead’s surface, and the acrosome integrity (by means of PNA-FITC lectin) in bound and unbound sperm were studied. Finally, in vitro matured porcine oocytes mixed with BZP2 were inseminated in vitro using fresh sperm and fertilisation results evaluated. Over 60% of beads had at least one sperm bound after 2 h of coincubation. ZP2-beads (BZP2) and cumulus-ZP2-bead complexes (CBZP2) reached the highest number of sperm per bead, whereas BZP3 and BZP4 models showed the highest number of unbound reacted sperm cells and acrosomal shrouds. Fertilisation efficiency and monospermy rate increased when oocytes were fertilised in the presence of BZP2. We, therefore, conclude that in pigs, it is mainly ZP2 that is involved in sperm-ZP binding whereas ZP3 and ZP4 induce acrosome reaction. Using magnetic sepharose ZP2-bound beads might be a valuable tool to improve the fertilisation rate in pigs.


1991 ◽  
Vol 99 (3) ◽  
pp. 485-495
Author(s):  
SUPAVADEE AMATAYAKUL-CHANTLER ◽  
MICHAEL A. J. FERGUSON ◽  
RAYMOND A. DWEK ◽  
THOMAS W. RADEMACHER ◽  
RAJ B. PAREKH ◽  
...  

Developmental studies of the changes in protein glycosylation are useful in elucidating the role of oligosaccharides in biological events. We have used the chemical technique, hydrazinolysis, to release oligosaccharides from cell surface glycoproteins of Dictyostelium discoideum. Oligomannose type, xylose- and fucose-containing oligosaccharides were found to be present. The charged oligosaccharides contained sulphate and mannose 6-phosphate residues; no sialic acid was detected. The charged oligosaccharides also contained significant amounts of xylose, arabinose, fucose and galactose, as well as mannose and N-acetylglucosamine, which were the main constituents of the neutral glycans. By monitoring the chemical characteristics of the liberated oligosaccharides, dramatic changes in both the charge and size distribution of cell surface oligosaccharides were observed throughout the 24 h period of cell development. A comparison, however, between the neutral glycan structures of prestalk and prespore cells, over the same time frame showed no dramatic differences Discoidin, a lectin present on the cell surface of 8 h cells, was found not to be glycosylated. Affinity chromatography using immobilised discoidin was used to probe a sugar library made from the cell surface glycoproteins of 8h cells. Discoidin was found to bind selectively an oligosaccharide with the structure Manα3(Manα6)(Xylβ2)Manβ4GlcNAc. This oligosaccharide lacks a conventional N,N'-diacetylchitobiose core and has only been previously observed in plant glycoproteins. Peptide-N-glycosidase F treatment of horseradish peroxidase released an identical structure, confirming that the oligosaccharide was not a degradation fragment of the hydrazine. The oligosaccharide was found to inhibit discoidinmediated haemagglutination with a Kt of 0.75 mM, a concentration approximately 100 times lower than that for galactose The correlation between changes in the amoebal plasma membrane oligosaccharide structures and the biological events occurring at different stages of development such as cell-cell adhesion and cellsubstratum attachment suggest an important role for sugars in these processes


2019 ◽  
Vol 25 (8) ◽  
pp. 458-470 ◽  
Author(s):  
Si Mei ◽  
Panyu Chen ◽  
Cheuk-Lun Lee ◽  
Weie Zhao ◽  
Ying Wang ◽  
...  

AbstractHuman spermatozoa can fertilize an oocyte only after post-testicular maturation and capacitation. These processes involve dynamic modification and reorganization of the sperm plasma membrane, which allow them to bind to the zona pellucida (ZP) of the oocyte. Defective sperm-ZP binding is one of the major causes of male subfertility. Galectin-3 is a secretory lectin in human seminal plasma well known for its action on cell adhesion. The aim of this study was to determine the role of galectin-3 in spermatozoa-ZP interaction and its association with fertilization rate in clinical assisted reproduction. Our studies revealed that the acrosomal region of ejaculated and capacitated spermatozoa possess strong galectin-3 immunoreactivity, which is much stronger than that of epididymal spermatozoa. Expression of galectin-3 can also be detected on seminal plasma-derived extracellular vesicles (EVs) and can be transferred to the sperm surface. Blocking of sperm surface galectin-3 function by antibody or carbohydrate substrate reduced the ZP-binding capacity of spermatozoa. Purified galectin-3 is capable of binding to ZP, indicating that galectin-3 may serve as a cross-linking bridge between ZP glycans and sperm surface glycoproteins. Galectin-3 levels in seminal plasma-derived EVs were positively associated with fertilization rates. These results suggest that galectin-3 in EVs is transferred to the sperm surface during post-testicular maturation and plays a crucial role in spermatozoa-ZP binding after capacitation. Reduced galectin-3 expression in seminal plasma-derived EVs may be a cause behind a low fertilization rate. Further studies with more clinical samples are required to confirm the relationship between galectin-3 levels and IVF outcomes.


2013 ◽  
Vol 25 (1) ◽  
pp. 247
Author(s):  
M. J. Izquierdo-Rico ◽  
M. Moreno-Manrique ◽  
F. A. García-Vázquez ◽  
M. J. Sánchez-Calabuig ◽  
P. Coy

Tissue-type plasminogen activator (tPA) is one of the components of the plasminogen-plasmin (PLG-PLA) system, better known as fibrinolytic system for its role in the blood clot lysis. It has been demonstrated recently that the activation of plasminogen into the protease plasmin during the sperm-oocyte interaction in the pig and cow decreases the percentages of penetration and increases monospermy (Mondéjar et al. 2012). However, in the mouse species, it was showed that PLG-PLA system enhances fertilization (Huarte et al. 1993). Expression of tPA has been described in rat oocytes (Bicsak et al. 1989) and cumulus cells (Ny et al. 1987; O’Connell et al. 1987), but no clear evidence about its expression in mouse, pig, and cow oocytes or cumulus cells is available. We hypothesised that differences in the effect of PLG-PLA system on fertilization results between the species mentioned above could be related to differences in tPA expression. The aim of this study was the detection of mRNA encoding tPA in oocytes and cumulus cells in mouse, pig, and cow by molecular analysis. Total RNA was obtained from oocytes and cumulus cells and cDNA was synthesised with an oligo-dT as primer. These cDNAs were used as template in RT-PCR amplifications using specific primers designed based on the GenBank sequence for Mus musculus, Sus scrofa, and Bos taurus tPA (NM_ 008872, NM_214054, NM_174146, respectively). The results of this study showed a different expression in the 3 studied species. In mouse, amplicon encoding tPA was detected in oocytes and cumulus cells. In cow and pig, tPA transcripts were obtained only in cumulus cells. The relation between the differences in the tPA expression pattern and the role of PLG-PLA system on fertilization remains to be investigated. This study was supported by MICINN (AGL2009-12512-C02-01-02).


Sign in / Sign up

Export Citation Format

Share Document