Role of Sperm Surface Molecules in Motility Regulation

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1956
Author(s):  
Francesco Manfrevola ◽  
Bruno Ferraro ◽  
Carolina Sellitto ◽  
Domenico Rocco ◽  
Silvia Fasano ◽  
...  

The etiology of human asthenozoospermia is multifactorial. The need to unveil molecular mechanisms underlying this state of infertility is, thus, impelling. Circular RNAs (circRNAs) are involved in microRNA (miRNA) inhibition by a sponge activity to protect mRNA targets. All together they form the competitive endogenous RNA network (ceRNET). Recently, we have identified differentially expressed circRNAs (DE-circRNAs) in normozoospermic and asthenozoospermic patients, associated with high-quality (A-spermatozoa) and low-quality (B-spermatozoa) sperm. Here, we carried out a differential analysis of CRISP2, CATSPER1 and PATE1 mRNA expression in good quality (A-spermatozoa) and low quality (B-spermatozoa) sperm fractions collected from both normozoospermic volunteers and asthenozoospermic patients. These sperm fractions are usually separated on the basis of morphology and motility parameters by a density gradient centrifugation. B-spermatozoa showed low levels of mRNAs. Thus, we identified the possible ceRNET responsible for regulating their expression by focusing on circTRIM2, circEPS15 and circRERE. With the idea that motility perturbations could be rooted in quantitative changes of transcripts in sperm, we evaluated circRNA and mRNA modulation in A-spermatozoa and B-spermatozoa after an oral amino acid supplementation known to improve sperm motility. The profiles of CRISP2, CATSPER1 and PATE1 proteins in the same fractions of sperm well matched with the transcript levels. Our data may strengthen the role of circRNAs in asthenozoospermia and shed light on the molecular pathways linked to sperm motility regulation.


Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
Viveshree S. Govender ◽  
Saiyur Ramsugit ◽  
Manormoney Pillay

Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.


Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 259-270
Author(s):  
Stephen J. Gaunt

The rat sperm surface antigen 2D6, located over the entire surface of the spermatozoon, is shown by use of a monoclonal antibody in indirect immunofluorescence experiments to spread laterally over the surface of the egg after fusion of sperm and egg plasma membranes at fertilization. Freshly fertilized eggs, obtained from superovulated rats 14h after hCG injection, showed the 2D6 antigen to have spread in a gradient over a discrete fan-shaped area of the egg surface anterior to the protruding sperm tail. Eggs at a later stage of sperm incorporation, obtained 20 h after hCG injection, snowed that the spread of antigen had extended to cover most or all of their surfaces. By 40 h after hCG injection, the approximate time that fertilized eggs cleaved to form 2-cell embryos, most of the 2D6 antigen had been lost from the cell surface. Fertilized eggs, but not unfertilized eggs or 2-cell embryos, were lysed by 2D6 monoclonal antibody in the presence of guinea pig complement. A model for sperm-egg fusion is presented to account for the observed pattern of spreading shown by the 2D6 antigen. The possible role of sperm antigens on the egg surface is discussed.


Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 577-586 ◽  
Author(s):  
H. Muller ◽  
R. Samanta ◽  
E. Wieschaus

Wingless signaling plays a central role during epidermal patterning in Drosophila. We have analyzed zygotic requirements for Wingless signaling in the embryonic ectoderm by generating synthetic deficiencies that uncover more than 99% of the genome. We found no genes required for initial wingless expression, other than previously identified segmentation genes. In contrast, maintenance of wingless expression shows a high degree of zygotic transcriptional requirements. Besides known genes, we have identified at least two additional genomic regions containing new genes involved in Wingless maintenance. We also assayed for the zygotic requirements for Wingless response and found that no single genomic region was required for the cytoplasmic accumulation of Armadillo in the receiving cells. Surprisingly, embryos homozygously deleted for the candidate Wingless receptor, Dfrizzled2, showed a normal Wingless response. However, the Armadillo response to Wingless was strongly reduced in double mutants of both known members of the frizzled family in Drosophila, frizzled and Dfrizzled2. Based on their expression pattern during embryogenesis, different Frizzled receptors may play unique but overlapping roles in development. In particular, we suggest that Frizzled and Dfrizzled2 are both required for Wingless autoregulation, but might be dispensable for late Engrailed maintenance. While Wingless signaling in embryos mutant for frizzled and Dfrizzled2 is affected, Wingless protein is still internalized into cells adjacent to wingless-expressing cells. Incorporation of Wingless protein may therefore involve cell surface molecules in addition to the genetically defined signaling receptors of the frizzled family.


2019 ◽  
Vol 25 (8) ◽  
pp. 458-470 ◽  
Author(s):  
Si Mei ◽  
Panyu Chen ◽  
Cheuk-Lun Lee ◽  
Weie Zhao ◽  
Ying Wang ◽  
...  

AbstractHuman spermatozoa can fertilize an oocyte only after post-testicular maturation and capacitation. These processes involve dynamic modification and reorganization of the sperm plasma membrane, which allow them to bind to the zona pellucida (ZP) of the oocyte. Defective sperm-ZP binding is one of the major causes of male subfertility. Galectin-3 is a secretory lectin in human seminal plasma well known for its action on cell adhesion. The aim of this study was to determine the role of galectin-3 in spermatozoa-ZP interaction and its association with fertilization rate in clinical assisted reproduction. Our studies revealed that the acrosomal region of ejaculated and capacitated spermatozoa possess strong galectin-3 immunoreactivity, which is much stronger than that of epididymal spermatozoa. Expression of galectin-3 can also be detected on seminal plasma-derived extracellular vesicles (EVs) and can be transferred to the sperm surface. Blocking of sperm surface galectin-3 function by antibody or carbohydrate substrate reduced the ZP-binding capacity of spermatozoa. Purified galectin-3 is capable of binding to ZP, indicating that galectin-3 may serve as a cross-linking bridge between ZP glycans and sperm surface glycoproteins. Galectin-3 levels in seminal plasma-derived EVs were positively associated with fertilization rates. These results suggest that galectin-3 in EVs is transferred to the sperm surface during post-testicular maturation and plays a crucial role in spermatozoa-ZP binding after capacitation. Reduced galectin-3 expression in seminal plasma-derived EVs may be a cause behind a low fertilization rate. Further studies with more clinical samples are required to confirm the relationship between galectin-3 levels and IVF outcomes.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0166687 ◽  
Author(s):  
Vinicius Coneglian Santos ◽  
Ana Paula Renno Sierra ◽  
Rodrigo Oliveira ◽  
Kim Guimarães Caçula ◽  
César Miguel Momesso ◽  
...  

2020 ◽  
Vol 108 (5) ◽  
pp. 1565-1573
Author(s):  
Katy C. K. Lam ◽  
Moses K. N. Lam ◽  
C. S. Chim ◽  
Godfrey C. F. Chan ◽  
James C. B. Li

Sign in / Sign up

Export Citation Format

Share Document