scholarly journals Decidual vascularization during organogenesis after perigestational alcohol ingestion

Reproduction ◽  
2019 ◽  
Author(s):  
Martín Ricardo Ventureira ◽  
Cristian Sobarzo ◽  
Felipe Argandoña ◽  
Wilder Alberto Palomino ◽  
Claudio Gustavo Barbeito ◽  
...  

Perigestational alcohol consumption up to early organogenesis can produce abnormal maternal vascularization via altered decidual VEGF/receptor expression. CF-1 female mice were administered with 10% ethanol in drinking water for 17 days prior to and up to day 10 of gestation. Control females received water without ethanol. Treated females had reduced frequency of implantation sites with expanded vascular lumen (p<0.05), α-SMA-immunoreactive spiral arteries in proximal mesometrial decidua, reduced PCNA-positive endothelial cells (p<0.01) and diminished uterine NK cell numbers (p<0.05) in proximal decidua compared to controls. The VEGF expression (laser capture microscopy, RT-PCR, western blot and immunohistochemistry) was reduced in decidual tissue after perigestational alcohol consumption (p<0.05). The uNK-DBA+ cells of treated females had reduced VEGF immunoexpression compared to controls (p<0.01). Very low decidual and endothelial cell KDR immunoreactivity and reduced decidual gene and protein KDR expression was found in treated females compared to controls (p<0.001). Instead, strong FLT-1 immunoexpression was detected in decidual and uNK cells (p<0.05) in the proximal decidua from treated females compared to controls. In conclusion, perigestational alcohol ingestion induces the reduction of lumen expansion of spiral arteries, concomitant with reduced endothelial cell proliferation and uNK cell population, and uncompleted remodeling of the artery smooth muscle. These effects were supported by low decidual VEGF and KDR gene and protein expression and increased FLT-1 expression, suggesting that VEGF and KDR reduction may contribute, in part, to mechanisms involved in deficient decidual angiogenesis after perigestational alcohol consumption in mouse.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Luke Hoeppner ◽  
Sutapa Sinha ◽  
Ying Wang ◽  
Resham Bhattacharya ◽  
Shamit Dutta ◽  
...  

Vascular permeability factor/vascular endothelial growth factor A (VEGF) is a central regulator of angiogenesis and potently promotes vascular permeability. VEGF plays a key role in the pathologies of heart disease, stroke, and cancer. Therefore, understanding the molecular regulation of VEGF signaling is an important pursuit. Rho GTPase proteins play various roles in vasculogenesis and angiogenesis. While the functions of RhoA and RhoB in these processes have been well defined, little is known about the role of RhoC in VEGF-mediated signaling in endothelial cells and vascular development. Here, we describe how RhoC modulates VEGF signaling to regulate endothelial cell proliferation, migration and permeability. We found VEGF stimulation activates RhoC in human umbilical vein endothelial cells (HUVECs), which was completely blocked after VEGF receptor 2 (VEGFR-2) knockdown indicating that VEGF activates RhoC through VEGFR-2 signaling. Interestingly, RhoC knockdown delayed the degradation of VEGFR-2 compared to control siRNA treated HUVECs, thus implicating RhoC in VEGFR-2 trafficking. In light of our results suggesting VEGF activates RhoC through VEGFR-2, we sought to determine whether RhoC regulates vascular permeability through the VEGFR-2/phospholipase Cγ (PLCγ) /Ca 2+ /eNOS cascade. We found RhoC knockdown in VEGF-stimulated HUVECs significantly increased PLC-γ1 phosphorylation at tyrosine 783, promoted basal and VEGF-stimulated eNOS phophorylation at serine 1177, and increased calcium flux compared with control siRNA transfected HUVECs. Taken together, our findings suggest RhoC negatively regulates VEGF-induced vascular permeability. We confirmed this finding through a VEGF-inducible zebrafish model of vascular permeability by observing significantly greater vascular permeability in RhoC morpholino (MO)-injected zebrafish than control MO-injected zebrafish. Furthermore, we showed that RhoC promotes endothelial cell proliferation and negatively regulates endothelial cell migration. Our data suggests a scenario in which RhoC promotes proliferation by upregulating -catenin in a Wnt signaling-independent manner, which in turn, promotes Cyclin D1 expression and subsequently drives cell cycle progression.


2019 ◽  
Vol 317 (1) ◽  
pp. G57-G66 ◽  
Author(s):  
Xiaocai Yan ◽  
Elizabeth Managlia ◽  
Xiao-Di Tan ◽  
Isabelle G. De Plaen

Prenatal inflammation is a risk factor for necrotizing enterocolitis (NEC), and it increases intestinal injury in a rat NEC model. We previously showed that maldevelopment of the intestinal microvasculature and lack of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) signaling play a role in experimental NEC. However, whether prenatal inflammation affects the intestinal microvasculature remains unknown. In this study, mouse dams were injected intraperitoneally with lipopolysaccharide (LPS) or saline at embryonic day 17. Neonatal intestinal microvasculature density, endothelial cell proliferation, and intestinal VEGF-A and VEGFR2 proteins were assessed in vivo. Maternal and fetal serum TNF concentrations were measured by ELISA. The impact of TNF on the neonatal intestinal microvasculature was examined in vitro and in vivo, and we determined whether prenatal LPS injection exacerbates experimental NEC via TNF. Here we found that prenatal LPS injection significantly decreased intestinal microvascular density, endothelial cell proliferation, and VEGF and VEGFR2 protein expression in neonatal mice. Prenatal LPS injection increased maternal and fetal serum levels of TNF. TNF decreased VEGFR2 protein in vitro in neonatal endothelial cells. Postnatal TNF administration in vivo decreased intestinal microvasculature density, endothelial cell proliferation, and VEGF and VEGFR2 protein expression and increased the incidence of severe NEC. These effects were ameliorated by stabilizing hypoxia-inducible factor-1α, the master regulator of VEGF. Furthermore, prenatal LPS injection significantly increased the incidence of severe NEC in our model, and the effect was dependent on endogenous TNF. Our study suggests that prenatal inflammation increases the susceptibility to NEC, downregulates intestinal VEGFR2 signaling, and affects perinatal intestinal microvascular development via a TNF mechanism. NEW & NOTEWORTHY This report provides new evidence that maternal inflammation decreases neonatal intestinal VEGF receptor 2 signaling and endothelial cell proliferation, impairs intestinal microvascular development, and predisposes neonatal mouse pups to necrotizing enterocolitis (NEC) through inflammatory cytokines such as TNF. Our data suggest that alteration of intestinal microvascular development may be a key mechanism by which premature infants exposed to prenatal inflammation are at risk for NEC and preserving the VEGF/VEGF receptor 2 signaling pathway may help prevent NEC development.


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 931-939 ◽  
Author(s):  
Cassin Kimmel Williams ◽  
Ji-Liang Li ◽  
Matilde Murga ◽  
Adrian L. Harris ◽  
Giovanna Tosato

AbstractDelta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by vascular endothelial growth factor (VEGF)-A and hypoxia. Gene targeting studies have shown that Dll4 is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are currently not defined. In this study, we generated primary human endothelial cells that overexpress Dll4 protein to study Dll4 function and mechanism of action. Human umbilical vein endothelial cells retrovirally transduced with Dll4 displayed reduced proliferative and migratory responses selectively to VEGF-A. Expression of VEGF receptor-2, the principal signaling receptor for VEGF-A in endothelial cells, and coreceptor neuropilin-1 was significantly decreased in Dll4-transduced endothelial cells. Consistent with Dll4 signaling through Notch, expression of HEY2, one of the transcription factors that mediates Notch function, was significantly induced in Dll4-overexpressing endothelial cells. The γ-secretase inhibitor L-685458 significantly reconstituted endothelial cell proliferation inhibited by immobilized extracellular Dll4 and reconstituted VEGFR2 expression in Dll4-overerexpressing endothelial cells. These results identify the Notch ligand Dll4 as a selective inhibitor of VEGF-A biologic activities down-regulating 2 VEGF receptors expressed on endothelial cells and raise the possibility that Dll4 may be exploited therapeutically to modulate angiogenesis.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Anastasia Gorelova ◽  
Sanghamitra Sahoo ◽  
Patrick J Pagano

Pulmonary arterial hypertension (PAH) is a poorly characterized disease of unclear etiology that affects individuals of all ages. Vascular remodeling and increase in pulmonary artery (PA) and right ventricle (RV) pressures are two major culprits in RV failure and death in PAH. Recent advances in the study of PAH suggest that endothelial cell proliferation is an early instigator of this hallmark remodeling. We postulated that Axl receptor tyrosine kinase (implicated in pro-proliferative and pro-survival signaling in cancerous cells) could mediate endothelial proliferation and thus hemodynamic changes occurring in PAH. Using immunofluorescent microscopy of lung microvessels of human PAH vs. non-PAH, we observed Axl expression on intimal endothelial cells but not medial smooth muscle cells. Furthermore, digitized microscopy revealed that Axl tended to increase on the endothelium of PAH vessels (1.65±0.15-fold vs. non-PAH; n=3-4; p=0.057 ). To address the role of Axl in vivo , an Axl inhibitor R428 was employed in a mouse model of pulmonary hypertension. C57Bl/6 mice were subjected to hypoxia at pO 2 =10% and VEGF receptor antagonist SU5416 (Su/Ch) or normoxia (Norm) for 3 wks. Indeed, Su/Ch caused a significant rise in lung Axl protein and mRNA (7.1±0.4- and 2.4±0.5-fold, Su/Ch vs. Norm, protein and mRNA, respectively; n=3-6; p<0.01). As predicted, RV pressure (RVP) rose from 27±0.5 to 43±1.8 mmHg (Norm vs. Su/Ch; n=6; p<0.01). However, we did not observe a decrease in RVP with twice-daily gavage of 75 mg/kg R428 (43±1.4 mmHg, Su/Ch + R428; n=6). A similar pattern was observed with mean PA pressure (18.4±0.3 and 28.7±1.2 mmHg, Norm vs. Su/Ch, p<0.01; 28.7±0.9 mmHg, Su/Ch + R428), RV resistance (1403±256 vs. 2703±464 Wood units, Norm vs. Su/Ch, n/s; vs. 3610±625 Wood units, Su/Ch + R428) and Fulton index (0.26±0.01 and 0.34±0.02, Norm vs. Su/Ch, p<0.05; 0.38±0.02, Su/Ch + R428). In conclusion, our preliminary results demonstrate upregulated Axl expression in the endothelium of PAH patients and in lungs of PH mice and suggest that Axl kinase may play a novel role in pulmonary vascular endothelial proliferation and remodeling in PAH. It remains to be determined whether drug bioavailability or severity of disease precluded an ameliorative effect of an Axl inhibitor.


2016 ◽  
Vol 47 (3) ◽  
pp. 769-782 ◽  
Author(s):  
Konstantinos Samitas ◽  
Nikolaos Poulos ◽  
Maria Semitekolou ◽  
Ioannis Morianos ◽  
Sofia Tousa ◽  
...  

Activin-A is a pleiotropic cytokine that regulates allergic inflammation. Its role in the regulation of angiogenesis, a key feature of airways remodelling in asthma, remains unexplored. Our objective was to investigate the expression of activin-A in asthma and its effects on angiogenesisin vitro.Expression of soluble/immunoreactive activin-A and its receptors was measured in serum, bronchoalveolar lavage fluid (BALF) and endobronchial biopsies from 16 healthy controls, 19 patients with mild/moderate asthma and 22 severely asthmatic patients.In vitroeffects of activin-A on baseline and vascular endothelial growth factor (VEGF)-induced human endothelial cell angiogenesis, signalling and cytokine release were compared with BALF concentrations of these cytokinesin vivo.Activin-A expression was significantly elevated in serum, BALF and bronchial tissue of the asthmatics, while expression of its protein receptors was reduced.In vitro, activin-A suppressed VEGF-induced endothelial cell proliferation and angiogenesis, inducing autocrine production of anti-angiogenic soluble VEGF receptor (R)1 and interleukin (IL)-18, while reducing production of pro-angiogenic VEGFR2 and IL-17. In parallel, BALF concentrations of soluble VEGFR1 and IL-18 were significantly reduced in severe asthmaticsin vivoand inversely correlated with angiogenesis.Activin-A is overexpressed and has anti-angiogenic effectsin vitrothat are not propagatedin vivo, where reduced basal expression of its receptors is observed particularly in severe asthma.


2007 ◽  
Vol 292 (3) ◽  
pp. L742-L747 ◽  
Author(s):  
Maromi K. Sakurai ◽  
Sang Lee ◽  
Danielle A. Arsenault ◽  
Vania Nose ◽  
Jay M. Wilson ◽  
...  

We hypothesize that compensatory lung growth after unilateral pneumonectomy in a murine model is, in part, angiogenesis dependent and can be altered using angiogenic agents, possibly through regulation of endothelial cell proliferation and apoptosis. Left pneumonectomy was performed in mice. Mice were then treated with proangiogenic factors [vascular endothelial growth factor (VEGF); basic fibroblast growth factor (bFGF)], VEGF receptor antibodies (MF-1, DC101), and VEGF receptor small molecule chemical inhibitors. Lung volume and mass were measured. The lungs were analyzed using immunohistochemistry by CD31 staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, type II pneumocytes staining, and proliferating cell nuclear antigen. Compensatory lung growth was complete by postoperative day 10 and was associated with diffuse apoptosis of endothelial cells and pneumocytes. This process was accelerated by VEGF, such that growth was complete by postoperative day 4 with similar associated apoptosis. bFGF had no effect on lung growth. MF-1 and DC101 had no effect. The VEGF receptor small molecule chemical inhibitors also had no effect. VEGF, but not bFGF, accelerates growth. VEGF receptor inhibitors do not block growth, suggesting that other proangiogenic factors play a role or can compensate for VEGF receptor blockade. Diffuse apoptosis, endothelial cell and pneumocyte, occurs at cessation of both normal compensatory and VEGF-accelerated growth. Angiogenesis modulators may control growth via regulation of endothelial cell proliferation and apoptosis, although the exact relationship between endothelial cells and pneumocytes has yet to be determined. The fact that bFGF did not accelerate growth in our model when it did accelerate regeneration in the liver model suggests that angiogenesis during organ regeneration is regulated in an organ-specific manner.


Sign in / Sign up

Export Citation Format

Share Document