scholarly journals The cAMP-ERK1/2 signaling pathway regulates urokinase-type plasminogen activator-induced bovine granulosa cell proliferation

Reproduction ◽  
2020 ◽  
Vol 160 (6) ◽  
pp. 853-862
Author(s):  
Yufen Zhao ◽  
Boyang Yu ◽  
Xinyu Liu ◽  
Jitu Hu ◽  
Yanyan Yang ◽  
...  

Although urokinase-type plasminogen activator (PLAU) and urokinase-type plasminogen activator receptor (PLAUR) have been reported to play key roles in ovarian function, their precise contribution to mammalian follicular development remains unclear. In this study, we first observed that PLAU and PLAUR were present in bovine granulosa cells (GCs). Following culture of granulosa cells with PLAU (0.5 ng/mL) and PLAUR antibody (10 µg/mL) separately and together for 24 or 48 h, a proliferation assay showed that interaction between PLAU and PLAUR contributes to bovine GC proliferation. To study the potential pathways involved in PLAU/PLAUR-induced cell proliferation, ELISA and Western blotting were performed. We found that PLAU significantly increased the ratio of phosphorylated to non-phosphorylated ERK1/2 through PLAUR signaling. Further treatment with U0126, a specific ERK1/2 phosphorylation inhibitor, markedly suppressed PLAU/PLAUR-induced ERK1/2 phosphorylation and cell proliferation. In addition, we found that PLAU and PLAUR significantly increased the intracellular cAMP level and the use of Rp-cAMP, a specific PKA inhibitor, prevented PLAU/PLAUR from promoting activation of the ERK1/2 pathway and GC proliferation. Therefore, the interaction between PLAU and PLAUR may be involved in accumulating cAMP signals and enabling MAPK/ERK1/2 activation, affecting GC proliferation. Here, we provide new mechanistic insights into the roles of PLAU and PLAUR on promoting bovine GC proliferation. The finding that potential cross-points between PLAU/PLAUR-induced intracellular signals affect GC proliferation will help in understanding the mechanisms regulating early follicular development.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmed H. Mekkawy ◽  
David L. Morris ◽  
Mohammad H. Pourgholami

The urokinase-type plasminogen activator receptor (uPAR) is a cell surface receptor which has a multifunctional task in the process of tumorigenesis including cell proliferation, adhesion, migration, and invasion. Many of the biological functions of uPAR necessitate interactions with other proteins. We have shown previously that uPAR interacts with HAX1 protein (HS-1-associated protein X-1). In the current study, to gain insight into the possible role of HAX1 overexpression in regulation of uPAR signal transduction pathway, several function assays were used. We found that, upon stimulation of uPAR, HAX1 colocalizes with uPAR suggesting a physiological role for HAX1 in the regulation of uPAR signal transduction. HAX1 overexpression augments cell proliferation and migration in uPAR-stimulated cells. Moreover, HAX1 over-expression augmented uPAR-induced cell adhesion to vitronectin as well as cellular invasion. Our results suggest that HAX1 over-expression may underlay a novel mechanism to regulate uPAR-induced functions in cancer cells.


2018 ◽  
Vol 23 (2) ◽  
pp. 1034-1049 ◽  
Author(s):  
Massimo Dal Monte ◽  
Maurizio Cammalleri ◽  
Valeria Pecci ◽  
Monica Carmosino ◽  
Giuseppe Procino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document