scholarly journals Behaviour of a sperm surface transmembrane glycoprotein basigin during epididymal maturation and its role in fertilization in mice

Reproduction ◽  
2002 ◽  
pp. 435-444 ◽  
Author(s):  
DK Saxena ◽  
T Oh-Oka ◽  
K Kadomatsu ◽  
T Muramatsu ◽  
K Toshimori

Basigin (bsg) is a transmembrane glycoprotein belonging to an immunoglobulin superfamily and is localized on the surface of the sperm tail. The behaviour of bsg during epididymal maturation and its role in fertilization were examined using an anti-bsg antibody. Spermatozoa from caput, corpus and cauda epididymides were immunostained by indirect immunofluorescence (IIF). Immunostaining revealed that bsg is localized on the principal piece of caput spermatozoa and the molecule was found on the middle piece during transit in the corpus and cauda epididymides. Concomitantly, the molecular mass of bsg was reduced from 37 kDa (testis) to 26 kDa (cauda epididymidis). IVF experiments were designed to assess the effect of anti-bsg antibody on the fertilization events. Anti-bsg antibody significantly inhibited primary binding to the cumulus-invested oocytes with intact zonae pellucidae in a dose-dependent manner. Consequently, the fertilization rate of cumulus-invested oocytes with intact zonae pellucidae was also inhibited. The bsg molecule was also detected on the head of live capacitated spermatozoa by IIF under IVF conditions. These findings indicate that testicular bsg is a glycosylated protein that undergoes molecular processing and deglycosylation during its transit in the epididymis. The bsg molecule that was detected on the sperm head after capacitation may facilitate the primary binding or might be involved in distinct events required for primary binding of spermatozoa to the zona pellucida during capacitation and sperm-cumulus interaction.

Zygote ◽  
1998 ◽  
Vol 6 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Donnie Reinhart ◽  
James Ridgway ◽  
Douglas E. Chandler

Xenopus laevis eggs are surrounded by an extracellular matrix consisting of a vitelline envelope, and three jelly layers, J1, J2, and J3 (from egg surface outward). The jelly layers vary in thickness (about 150, 15 and 200 μm for J1, J2 and J3 respectively) but all are translucent allowing observation of sperm penetration. Video microscopy demonstrated that sperm are able to penetrate and traverse J3 at velocities approaching 30 μm/s. Sperm swim through jelly in a corkscrew-like manner with their rotational and forward velocities being tightly coupled at about 30°/μm forward travel. They are propelled by whip-like power strokes involving hairpin bends in the flagellum that are generated every 180° of rotation and which are propagated from base to tip. The overall trajectories of individual sperm are quite variable. Many sperm head directly for J2 but some do not, these swimming circumferentially, or even away from the egg surface. Most sperm (over 97%) that enter the jelly do not get to the egg surface but are stopped at a variety of positions within J3 or at the outer surface of J2. Efficient sperm penetration and passage through the jelly layers requires a low electrolyte concentration in the surrounding medium, and is inhibited by the lectin wheat germ agglutin (WGA) in a dose-dependent manner. WGA does not block sperm penetration of J3 but does block further progression towards the egg surface. This observation suggests that sperm motility within the jelly is dependent on the carbohydrate moieties of the large glycoconjugates present, and that their alteration by WGA binding accounts for the inability of sperm to reach the egg surface and fertilise the egg.


1996 ◽  
Vol 44 (7) ◽  
pp. 687-701 ◽  
Author(s):  
F W Kan ◽  
Y Lin

We used fracture-label and label-fracture cytochemistry in conjunction with the phospholipase A2-colloidal gold (PLA2-CG) technique to study the distribution of phospholipids in ejaculated boar spermatozoa. These techniques provide visualization of the topographical distribution of phospholipids in freeze-fractured sperm membranes in a three-dimensional view. In various freeze-fractured boar sperm membranes and crossfractured cytoplasmic structures, quantitative analysis revealed that the nuclear envelope membranes and the nuclear content possessed the highest labeling density of PLA2-CG. Moderate labeling was detected over acrosomal membranes, especially the inner acrosomal membrane. Replicas of both protoplasmic and exoplasmic fracture faces of the plasma membrane of boar sperm head showed a relatively low density of PLA2-CG labeling. Moreover, a differential distribution of phospholipids was seen over the protoplasmic face of the plasma membrane domains of the sperm head, which showed the highest concentration of gold particles in the postacrosomal region, followed by the equatorial segment and the anterior acrosome region. The PLA2-CG labeling densities over the post-acrosomal region and the equatorial segment were significantly higher than that over the anterior acrosome region. In the flagellum, an intense labeling was also seen over crossfractured mitochondria, dense fibers, and fibrous sheath. The protoplasmic fracture face of the plasma membrane over the middle piece, the annulus, and the principal piece was moderately labeled by PLA2-CG. No significant difference in mean labeling density of PLA2-CG was detected among the three membrane domains. In label-fracture preparations, exoplasmic halves of the plasma membrane of the head and the middle piece of the tail were uniformly labeled with PLA2-CG. However, the annulus and principal piece were devoid of PLA2-CG binding sites. These results indicate that differential distribution of phospholipids associated with the boar sperm membranes may reflect phospholipid composition of membrane domains characteristic of special physiological functions.


Author(s):  
Kamila Czubak-Prowizor ◽  
Anna Babinska ◽  
Maria Swiatkowska

AbstractThe F11 Receptor (F11R), also called Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A), is a transmembrane glycoprotein of the immunoglobulin superfamily, which is mainly located in epithelial and endothelial cell tight junctions and also expressed on circulating platelets and leukocytes. It participates in the regulation of various biological processes, as diverse as paracellular permeability, tight junction formation and maintenance, leukocyte transendothelial migration, epithelial-to-mesenchymal transition, angiogenesis, reovirus binding, and platelet activation. Dysregulation of F11R/JAM-A may result in pathological consequences and disorders in normal cell function. A growing body of evidence points to its role in carcinogenesis and invasiveness, but its tissue-specific pro- or anti-tumorigenic role remains a debated issue. The following review focuses on the F11R/JAM-A tissue-dependent manner in tumorigenesis and metastasis and also discusses the correlation between poor patient clinical outcomes and its aberrant expression. In the future, it will be required to clarify the signaling pathways that are activated or suppressed via the F11R/JAM-A protein in various cancer types to understand its multiple roles in cancer progression and further use it as a novel direct target for cancer treatment.


2002 ◽  
Vol 14 (2) ◽  
pp. 101 ◽  
Author(s):  
Józefa Styrna ◽  
Barbara Bili´nska ◽  
Halina Krzanowska

Males of the mouse strain B10.BR/SgSn and its congenic mutant strain B10.BR-Ydel, with a partial deletion of the Y chromosome, were used to examine factors related to poor sperm quality and quantity in the mutant strain. The testes of males from the two strains did not differ in their immunohistochemical reaction to androgen receptors or in the number of Sertoli and germ cells in tubules with normal morphology. However, mutants showed a greater frequency of degenerated tubules, a higher level of X–Y chromosome dissociation at meiosis (18% v. 10% in control males), and a lower content of resistant sperm heads in testis homogenates. In the cauda epididymidis, there was a higher percentage of spermatozoa with abnormal heads (88% v. 31%) and of spermatozoa with a cytoplasmic droplet still attached (74% v. 51%). Many sperm heads with flat acrosomes, occurring only in mutants (30% of sperm population), were deficient in proteolytic enzymes, as evidenced by the reaction on gelatine membranes. Most copulations of mutant males (11/18) were sterile in spite of the presence of spermatozoa in the uterus, but in the remaining copulations the fertilization rate was reasonably good (79%). Low numbers of spermatozoa were recovered from the oviducts, and those with the most severely deformed heads were less frequent there than in the uterus. The results show that a partial deletion of the Y chromosome affects efficiency of spermatogenesis, morphology of spermatozoa, their epididymal maturation and capacity to reach the ampulla and fertilize eggs.


1990 ◽  
Vol 63 (03) ◽  
pp. 505-509 ◽  
Author(s):  
Thomas Mätzsch ◽  
David Bergqvist ◽  
Ulla Hedner ◽  
Bo Nilsson ◽  
Per Østergaar

SummaryA comparison between the effect of low molecular weight heparin (LMWH) and unfragmented heparin (UH) on induction of osteoporosis was made in 60 rats treated with either UH (2 IU/ g b w), LMWH in 2 doses (2 Xal U/g or 0.4 Xal U/g) or placebo (saline) for 34 days. Studied variables were: bone mineral mass in femora; fragility of humera; zinc and calcium levels in serum and bone ash and albumin in plasma. A significant reduction in bone mineral mass was found in all heparin-treated rats. There was no difference between UH and LMWH in this respect. The effect was dose-dependent in LMWH-treated animals. The zinc contents in bone ash were decreased in all heparin-treated rats as compared with controls. No recognizable pattern was seen in alterations of zinc or calcium in serum. The fragility of the humera, tested as breaking strength did not differ between treatment groups and controls. In conclusion, if dosed according to similar factor Xa inhibitory activities, LMWH induces osteoporosis to the same extent as UH and in a dose-dependent manner. The zinc content in bone ash was decreased after heparin treatment, irrespective of type of heparin given.


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


2018 ◽  
Vol 1 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Darío Acuña-Castroviejo ◽  
Maria T Noguiera-Navarro ◽  
Russel J Reiter ◽  
Germaine Escames

Due to the broad distribution of extrapineal melatonin in multiple organs and tissues, we analyzed the presence and subcellular distribution of the indoleamine in the heart of rats. Groups of sham-operated and pinealectomized rats were sacrificed at different times along the day, and the melatonin content in myocardial cell membranes, cytosol, nuclei and mitochondria, were measured. Other groups of control animals were treated with different doses of melatonin to monitor its intracellular distribution. The results show that melatonin levels in the cell membrane, cytosol, nucleus, and mitochondria vary along the day, without showing a circadian rhythm. Pinealectomized animals trend to show higher values than sham-operated rats. Exogenous administration of melatonin yields its accumulation in a dose-dependent manner in all subcellular compartments analyzed, with maximal concentrations found in cell membranes at doses of 200 mg/kg bw melatonin. Interestingly, at dose of 40 mg/kg b.w, maximal concentration of melatonin was reached in the nucleus and mitochondrion. The results confirm previous data in other rat tissues including liver and brain, and support that melatonin is not uniformly distributed in the cell, whereas high doses of melatonin may be required for therapeutic purposes.


Contrast- induced nephropathy (CIN) is an elevation of serum creatinine of ≥ 0.5 mg/dL from baseline after two to three days of exposure to contrast substance if there is no other cause for acute kidney injury. Atorvastatin may protect normal kidney physiology from contrast- induced kidney injury by effects unrelated to hypolipidemia termed pleiotropic effect by decline of endothelin production, angiotensin system down regulation, and under expression of endothelial adhesion molecules. This study was conducted to assess the strategy by which atorvastatin can achieve protective effect for kidneys after exposure to contrast media in an animal model. A 40 male rats were distributed randomly into 4 groups; ten rats for each: group (1): given normal saline; group (2): CIN group given iopromide as contrast media; group (3): given atorvastatin (20mg/kg) and iopromide; and group (4): given atorvastatin (40mg/kg) and iopromide. Blood collected by cardiac puncture for detection of serum glutathione, malondialdehyde, matrix metalloproteinase-9, and interleukin-18. The results have shown a significant increase in inflammatory and oxidative stress markers in contrast media group, and significant reduction in these markers in atorvastatin treated groups, in a dose-dependent manner. As conclusion, atorvastatin mechanism for protection against CIN in a dose-dependent manner can mediate by anti-inflammatory and antioxidant effects.


1984 ◽  
Vol 107 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Itaru Kojima ◽  
Etsuro Ogata ◽  
Hiroshi Inano ◽  
Bun-ichi Tamaoki

Abstract. Incubation of 18-hydroxycorticosterone with the sonicated mitochondrial preparation of bovine adrenal glomerulosa tissue leads to the production of aldosterone, as measured by radioimmunoassay. The in vitro production of aldosterone from 18-hydroxycorticosterone requires both molecular oxygen and NADPH, and is inhibited by carbon monoxide. Cytochrome P-450 inhibitors such as metyrapone, SU 8000. SU 10603, SKF 525A, amphenone B and spironolactone decrease the biosynthesis of aldosterone from 18-hydroxycorticosterone. These results support the conclusion that the final reaction in aldosterone synthesis from 18-hydroxycorticosterone is catalyzed by an oxygenase, but not by 18-hydroxysteroid dehydrogenase. By the same preparation, the production of [3H]aldosterone but not [3H]18-hydroxycorticosterone from [1,2-3H ]corticosterone is decreased in a dose-dependent manner by addition of non-radioactive 18-hydroxycorticosterone.


Sign in / Sign up

Export Citation Format

Share Document