scholarly journals Temporal sensitivity of bovine embryos to culture environment after fertilization and the implications for blastocyst quality

Reproduction ◽  
2003 ◽  
pp. 337-346 ◽  
Author(s):  
P Lonergan ◽  
D Rizos ◽  
J Kanka ◽  
L Nemcova ◽  
AM Mbaye ◽  
...  

The aim of this study was to examine the temporal sensitivity of bovine embryos to culture environment after fertilization to determine which period, if any, is most critical in determining blastocyst quality. Bovine zygotes produced in vitro were divided into six groups and cultured either in vitro (in synthetic oviductal fluid, SOF), in vivo (in the ewe oviduct) or in a combination of both systems. Development to the blastocyst stage, the ability of the blastocysts to withstand cryopreservation and the relative abundance of several gene transcripts were examined. Culture in SOF for either 2 or 4 days, followed by subsequent culture in the ewe oviduct, resulted in a significantly lower yield of blastocysts than did all other methods, the effect being most marked in embryos that were cultured in SOF for 4 days. In contrast, culture in vivo for the first 2 or 4 days after fertilization followed by culture in vitro did not have such a marked effect on blastocyst development. Blastocysts produced after culture in the oviduct for 6 days had the highest rates of survival over 72 h after warming (100% survival at 24 h; >95% survival at 72 h). The embryos that spent the last 4 days of culture in vivo also had relatively high rates of survival (100% at 24 h, 73.7% at 72 h). Blastocysts produced entirely in SOF had very low rates of survival after vitrification, with <40% viable at 24 h and <20% survival at 72 h. Blastocysts derived from embryos that spent the first 2 days in vivo and the last 4 days in vitro had the lowest rates of survival (6.7%), whereas those that spent the last 2 days only in SOF had intermediate rates of survival (40.6%). These differences were reflected in the relative abundance of transcripts for the Bax gene.

2004 ◽  
Vol 16 (2) ◽  
pp. 243
Author(s):  
A.T.D. Oliveira ◽  
C. Gebert ◽  
R.F.F. Lopes ◽  
H. Niemann ◽  
J.L. Rodrigues

In spite of in vitro embryo production systems having been greatly improved over recent years, employing a variety of culture conditions (media, protein sources, gas atmosphere, etc.), we still do not know much about the real necessity of embryos to develop under the same conditions as occur in vivo. These differences between in vivo and in vitro culture at preimplantation embryonic stages can produce deviations in gene expression and in normal fetal development (large offspring syndrome). Heat shock proteins (Hsp) are engaged in cell response to regulatory signals or perturbations in the microenviroment and can be used as a sensitive indicator of stress caused by suboptimal culture conditions (Wrenzycki et al., 2001Hum. Reprod. 16, 893–901). Hsp act as chaperones in facilitating protein folding and assembly and stabilize damaged proteins to prevent aggregation of fragments, thereby allowing repair or degradation. The aim of the present study was to investigate the effects of different embryo/volume ratios on bovine embryo development and the relative abundance of Hsp 70.1 gene transcripts. In this experiment, oocytes were isolated from slaugterhouse ovaries and matured, fertilized and cultured in groups of 5, 10, 20 or 30 per each drop of 100μL. The oocytes were matured in TCM 199 supplemented with 0.4% BSA. After maturation, oocytes were fertilized in TALP medium, using frozen/thawed sperm, selected using a percoll density gradient. The zygotes were cultured to the morula or Day 7 blastocyst stage employing SOF supplemented with 0.4 % BSA. Developmental check points were cleavage rate (Day 3pi), blastocyst formation (Day 8pi) and hatching (Day 11pi). A semi-quantitative RT-PCR assay was used to determine the relative levels of gene transcripts in single embryos at morula (Day 6) and blastocyst (Day 7) stages (Wrenzycki et al., 2001 Biol. Reprod. 65, 309–317). Data of cleavage, blastocyst formation and hatching rates were analyzed using chi-square test. Relative abundance (RA) of Hsp 70.1mRNA were compared in tested groups using ANOVA followed a Tukey test. Differences at P&lt;0.05 were considered significant. Results show that no significative difference in hatching rate per blastocyst produced was detected among the four groups. Cleavage rate and blastocyst formation were significantly higher in groups with 5, 10 and 20 embryos compared with drops containing 30 embryos. Hsp transcripts were detected in morula and blastocyst stages in all groups. In morula stage, no differences were observed in the RA of Hsp 70.1mRNA among groups with 5, 10, 20 and 30 embryos cultured per drop. However, in blastocyst stage, the RA was significantly increased in the group with 20 embryos per drop as compared to the group with 5 embryos. The results show that different embryo/volume ratios in culture influence not only cleavage rate, blastocyst formation and hatching rate, but also expression of Hsp 70.1 gene. Further studies changing other culture conditions and using in vivo-derived bovine embryos will aid in elucidating which culture systems are ideal to produce bovine embryos in vitro. This research was supported by CAPES/DAAD program and CNPq.


2006 ◽  
Vol 18 (2) ◽  
pp. 195
Author(s):  
D. Rizos ◽  
B. Pintado ◽  
J. de la Fuente ◽  
P. Lonergan ◽  
A. Gutierrez-Adan

It is well known that modification of the post-fertilization culture environment of mammalian pre-attachment embryos can affect blastocyst quality, manifested in terms of morphology, cryotolerance, and relative abundance of certain gene transcripts. Culture of in vitro-produced bovine zygotes in the ewe oviduct leads to the development of blastocysts of a quality similar to those derived totally in vitro (Rizos et al. 2002 Biol. Reprod. 66, 589-595). However, such a system has disadvantages from a practical and animal welfare point of view. The isolated mouse oviduct (IMO) culture system is a potential alternative and has been successfully used in the in vitro culture of mouse, rat, hamster, and pig embryos from the one-cell stage to the morula/blastocyst stage. The aim of this study was to examine (1) the development of bovine zygotes in the IMO maintained in two different media (SOF and KSOM) in organ culture, and (2) the quality of the resultant blastocysts assessed in terms of the relative abundance of transcripts for several genes that have been previously implicated in embryo quality. Mouse oviducts were isolated from adult Swiss females (CD1, Harlan) the day after mating with an intact male. Approximately 10-15 presumptive bovine zygotes, produced by in vitro oocyte maturation and fertilization, were transferred to the ampullae of the isolated oviducts and were cultured in Transwell plates (Costar, Corning, NY, USA) over 1.1 mL of culture medium (SOF, n = 241 or KSOM, n = 320) at 39�C in an atmosphere of 5% CO2 in air at maximum humidity. A control group of embryos was cultured in droplets (25 �L) of the same culture medium and conditions in parallel (SOF, n = 278, KSOM, n = 225). Five replicates (=days of bovine ovary collection) were carried out. Following 6 days of culture, embryos were recovered from the oviducts/culture drops and blastocysts were snap-frozen in liquid nitrogen. Quantification of all gene transcripts was carried out by real time quantitative RT-PCR. Data on embryo development were analyzed by chi-square analysis and differences in transcript abundance by ANOVA. Culture in the IMO did not affect the proportion of zygotes developing to the blastocyst stage compared to the respective control droplets (SOF: 21.0 vs. 21.9%; KSOM: 22.0 vs. 22.2%). Culture in the IMO in SOF resulted in an increase (P d 0.05) in the abundance of transcripts for Oct-4 and SOX and reduced abundance of Glut-1, Na/K transporter, Cx43, and survivin, compared to control embryos. In contrast, culture in the IMO in KSOM resulted in increased abundance of transcripts for Glut-1, Cx43, Oct-4, and survivin and a reduced expression of Na/K transporter and SOX. Transcripts for G6PDH, IFN, and E-Cad were unaffected by culture environment. In conclusion, culture in the IMO leads to alterations in the relative abundance of transcripts that have been previously associated with embryo quality following culture in the ewe oviduct. However, the effect is dependent on the basal medium used.


2004 ◽  
Vol 16 (2) ◽  
pp. 242
Author(s):  
P. Lonergan ◽  
D. Rizos ◽  
A. Gutierrez-Adan ◽  
P.M. Moreira ◽  
B. Pintado ◽  
...  

The objective of this study was to examine the time during the post-fertilization culture period that gene expression patterns of in vitro cultured bovine embryos diverge from those of their in vivo cultured counterparts. Presumptive bovine zygotes were produced by IVM/IVF of immature oocytes collected from the ovaries of slaughtered animals. At approximately 20h post-insemination (hpi), presumptive zygotes were randomly divided into two culture groups, either in vitro in synthetic oviduct fluid or in vivo, and transferred into the ewe oviduct. Embryos were recovered from both systems at approximately 30hpi (2-cell), two (4-cell), three (8-cell), four (16-cell), five (early morula), six (compact morula) or seven (blastocyst) days pi and snap-frozen for the analysis of transcript abundance using real-time PCR. The transcripts studied were interferon-tau, apoptosis regulator box-a (Bax), connexin 43, sarcosine oxidase, glucose transporter 5, mitochondrial Mn-superoxide dismutase, insulin-like growth factor II, and insulin-like growth factor-I receptor, most of which are known from our previous work to be differentially transcribed in blastocysts derived from culture in vitro or in vivo. Analysis was done on pools of 10 embryos. Data were analyzed using one-way repeated measures ANOVA. The relative abundance of the transcripts studied varied throughout the preimplantation period and was strongly influenced by the culture environment. For example, transcripts for interferon-tau were detected from the 8-cell stage onwards in in vitro-cultured embryos but not until the early morula stage in those cultured in vivo. Levels of this transcript increased significantly at the compact morula and blastocyst stages in both groups but were significantly higher (P&lt;0.05) in in vitro-cultured embryos at both stages. mRNA for Bax was not detected before the 8-cell stage in in vitro cultured embryos and not until the 16-cell stage in in vivo cultured embryos. The abundance of this transcript increased significantly thereafter up to the blastocyst stage in both groups. The level of expression was significantly higher (P&lt;0.05) at all stages of development in in vitro-cultured embryos than those cultured in vivo. The relative abundance of Cx43 transcripts decreased in both in vitro- and in vivo-cultured embryos at the 8- to 16-cell stage. Levels remained low thereafter in the in vitro-cultured embryos but significantly increased in those cultured in vivo. Transcript abundance was significantly higher in in vivo cultured embryos from Day 4 onwards with a ten-fold difference presence at the blastocyst stage. Differences also existed for the other transcripts studied. These data demonstrate that changes in transcript abundance in blastocyst stage embryos are in many cases a consequence of perturbed transcription earlier in development. Depending on the transcript, these differences may be evident in as short as 10h of culture.


2008 ◽  
Vol 20 (1) ◽  
pp. 169 ◽  
Author(s):  
C. E. McHughes ◽  
G. K. Springer ◽  
L. D. Spate ◽  
R. Li ◽  
R. J. Woods ◽  
...  

Identification of transcripts that are present at key development stages of preimplantation embryos is critical for a better understanding of early embryogenesis. To that end, this project had two goals. The first was to characterize the relative abundance of multiple transcripts during several developmental stages, including metaphase II-stage oocytes (MPII), and 2-cell-stage (2-cell), precompact morula (PCM), and in vitro-produced blastocyst-stage (IVTBL) embryos. The second was to characterize differences in the relative abundance of transcripts present in in vivo- (IVVBL), in vitro-, and nuclear transfer-produced (NTBL) blastocysts. It was our hypothesis that the identification of differentially represented transcripts from these stages would reveal not only developmentally important genes, but also genes that might be aberrantly expressed due to embryo production techniques. Individual clusters from a large bovine EST project (http://genome.rnet.missouri.edu/Bovine/), which focused on female reproductive tissues and embryos, were compared using Fisher's exact test weighted by number of transcripts per tissue by gene (SAS PROC FREQ; SAS Institute, Inc., Cary, NC, USA). Of the 3144 transcripts that were present during embryogenesis, 125 were found to be differentially represented (P < 0.01) in at least one pairwise comparison (Table 1). Some transcripts found to increase in representation from the MPII to the 2-cell stage include protein kinases, PRKACA and CKS1, as well as the metabolism-related gene, PTTG1. These same transcripts were also found to decrease in representation from the 2-cell to the PCM stage. RPL15 (translation) and FTH1 (immune function) were both more highly represented in the PCM than in the 2-cell stage. From PCM to IVTBL, we saw an increase in RPS11, another translation-related transcript. When comparing blastocyst-stage embryos from different production techniques, several transcripts involved in energy production (e.g., COX7B and COX8A) were found to be more highly represented in the NTBL than in the IVTBL. COX8A was also more highly represented in the IVVBL than in the IVTBL. By investigating these differentially represented transcripts, we will be able to better understand the developmental implications of embryo manipulation. We may also be able to better develop reproductive technologies that lead to in vitro- and nuclear transfer-derived embryos which more closely follow a normal program of development. Table 1. Differentially represented transcripts between developmental stages


2007 ◽  
Vol 74 (8) ◽  
pp. 972-977 ◽  
Author(s):  
Deirdre Corcoran ◽  
Dimitrios Rizos ◽  
Trudee Fair ◽  
Alex C.O. Evans ◽  
Patrick Lonergan

2006 ◽  
Vol 18 (2) ◽  
pp. 174
Author(s):  
A. S. Lopes ◽  
S. E. Madsen ◽  
N. B. Ramsing ◽  
L. H. Larsen ◽  
T. Greve ◽  
...  

In vitro-produced (IVP) bovine embryos differ (e.g. morphology and physiology) from their in vivo counterparts. Oxygen consumption is an indicator of the overall metabolic activity of a single embryo. Therefore, the aim of this study was to determine and compare respiration rates of in vivo- and in vitro-produced bovine day 7 embryos. Diameters of these two embryo types were also compared. In vivo embryos (n = 28) were recovered from 8 superovulated Holstein Frisian cows on day 7 following AI, while IVP embryos (n = 160; Holm et al. 1999 Theriogenology 52, 683-700) were used on day 7 after fertilization. Embryos were measured (outer diameter) and morphologically evaluated (Quality 1 to 4, IETS Manual, 1998). Only transferable in vivo embryos were used (i.e. excluding Quality 4). Respiration rates were measured on each embryo by Nanorespirometer technology (Lopes et al. 2005 Reprod. Fertil. Develop. 17, 151). Data were analyzed using Proc Mixed, and values are presented as mean � SEM. Values with different superscripts differ significantly (P < 0.05). The average respiration rates were 0.82 � 0.06a nL/h for in vivo vs. 1.37 � 0.06b nL/h for IVP embryos. The average respiration rates for the different morphological qualities were as follows (nL/h, numbers in brackets): IVP: 2.1 � 0.08a (38), 1.37 � 0.07b (55), 1.08 � 0.07c (48) and 0.62 � 0.11d (19) for Quality 1, 2, 3, and 4, respectively. In vivo: 1.17 � 0.21b,c,e (6), 0.80 � 0.15c,d,e (12), and 0.64 � 0.16d,f (10) for Quality 1, 2, and 3, respectively. The average diameter (mm) of in vivo and IVP embryos was 0.157 � 0.002a and 0.176 � 0.002b, respectively. Respiration rates were directly related to embryo diameter; larger embryos were associated with higher respiration rates (y = 17.55 � 1.32 nL/h � mm, n = 188). Respiration rates of in vivo embryos were significantly lower than those of IVP embryos, regardless of quality. This difference could reflect an effect of the culture conditions on IVP embryos because media components affect embryo metabolism. Moreover, the different ages (day 7 for IVP vs. approximately Day 6.5 for in vivo embryos, because in vivo embryos are less than 7 days after fertilization at recovery) and stages (IVP: up to expanded blastocyst stage; in vivo: morula or early blastocyst stage) could have influenced the results and also partly explain the smaller diameter of the in vivo embryos. Finally, respiration rates decreased proportionately to the morphological quality within embryo type, indicating that morphological differences are reflected at the physiological level. In conclusion, this study further outlines metabolic differences between in vivo and IVP bovine embryos. Whether such differences are a manifestation of metabolic stress associated to the separation from the natural environment or reflect suboptimal culture conditions is yet to be determined. ASL is supported by FCT, Portugal.


2007 ◽  
Vol 19 (1) ◽  
pp. 256
Author(s):  
W. J. Son ◽  
M. K. B. ◽  
Y. J. Jeong ◽  
S. Balasubramanian ◽  
S. Y. Choe ◽  
...  

Various factors are known to influence the survival and development of in vitro-produced embryos, including co-culture with somatic cells, antioxidants, and O2 tension. Studies in several species report that embryo development and quality were enhanced at low O2 concentrations. This study compared the effects of 2 O2 concentrations on IVP embryo development, embryo quality, and gene expression to those of in vivo counterparts. Cumulus–oocyte complexes were matured in vitro in TCM-199 with hormones and 10% FCS, and inseminated in TALP medium. Presumptive zygotes were cultured in SOF medium under either 5% or 20% O2 in air. In triplicate, sets of 5 embryos at the 2-cell, 4-cell, 8-cell, 16-cell, morula, and Day 7 blastocyst stages were used for analyzing the expression patterns of apoptotic (Bax and Bcl2), metabolism (Glut-1 and Glut-5), stress (Sox, Hsp70, and G6PDH), compaction (Cx43), oxidation (PRDX5, NADH, and MnSOD), and implantation (VEGF and IFN-tau) genes using real-time quantitative PCR. The expression of each gene was normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Statistical analysis was performed with Bonferroni and Duncan tests by ANOVA (P &lt; 0.05). Cleavage rates did not differ among groups. Blastocyst and hatched blastocyst development in 5% O2 was significantly (P &lt; 0.05) higher than in 20% O2. Total cell number of in vivo blastocysts was significantly (P &lt; 0.05) higher than that of IVP blastocysts. ICM ratio and apoptosis of in vivo blastocysts were significantly (P &lt; 0.05) lower than for IVP blastocysts. The relative abundances (RAs) of Glut-1, Glut-5, MnSOD, NADH, PRDX5, Cx43, Bcl2, and IFN-τ were significantly (P &lt; 0.05) higher in in vivo embryos, whereas the RAs of Sox, G6PDH, Hsp70, Bax, and VEGF were significantly (P &lt; 0.05) lower than for IVP counterparts. In conclusion, culture at 5% O2 concentration resulted in higher rates of development to the blastocyst stage, higher total cell numbers, and decreased apoptosis. Furthermore, differences in expression of genes including Glut-1, Glut-5, Sox, G6PDH, Hsp70, Bax, Bcl2, Cx43, PRDX5, NADH, MnSOD, VEGF, and IFN-τ may prove useful in determining optimal culture conditions. This work was supported by ARPC (204119-03-SB010), Republic of Korea.


2010 ◽  
Vol 22 (1) ◽  
pp. 238
Author(s):  
I. P. Emanuelli ◽  
B. F. Agostinho ◽  
M. P. M. Mancini ◽  
C. M. Barros ◽  
M. F. G. Nogueira

Embryonic chimeras have been used as a tool to understand embryogenesis and organogenesis, as well as to prove, in vivo, the pluripotency of the embryonic stem cells. One of the techniques used to obtain embryonic chimeras is aggregation, which can be performed with intact or half-embryos and in different stages of the development, produced by in vivo or in vitro systems and in different wells. However, its efficiency tends to reduce when advanced stages, such as morulae and blastocysts, are used. The aim of this work was to evaluate the effect of the treatment with an agglutinating agent (phytohemagglutinin-L; PHA) in the percentage of chimeras produced with IVF bovine embryos. Bovine ovaries (from abattoir) were used to obtain 270 COC that were matured in drops (90 μL) of TCM-199 bicarbonate medium, supplemented with 10% of FCS, and incubated in vitro for 22 to 24 h. The fertilization occurred in TALP-IVF medium, and the COC were maintained in the incubator for 18 h. After fertilization, the presumptive zygotes were transferred to SOF culture medium to in vitro culture. In vitro maturation, fertilization, and culture were performed under 38.5°C, 5% CO2 in air and saturated humidity. The chimerism by aggregation was tested between 2 intact (zona-free) 8- to 16-cell stage embryos in the presence (G1, n = 16) or absence of PHA (G2, n = 14) and between one half-morula and one half-blastocyst with (G3, n = 15) or without PHA (G4, n = 12). The embryos in groups G1 and G3 were treated with PHA in a concentration of 500 μLg mL-1 for 3 min. After PHA treatment, the pairs of embryos were allocated in wells, under previously described culture conditions, until expanded blastocyst stage could be observed (Day 7 of culture). At 24 h of culture, embryonic aggregation pairs were first evaluated to detect only cohesive masses of cells. The results (chimerism rate) were 62.5%, 42.9%, 40.0%, and 25.0%, respectively, for groups G1, G2, G3, and G4. There were no significant differences neither among groups (chi-square, P = 0.252) nor between G1 and G2 (P = 0.464), G3, and G4 (P = 0.683; Fisher’s exact test). Main effects as use of PHA (G1 + G3 v. G2 + G4, P = 0.284) and stage of embryos (G1 + G2 v. G3 + G4, P = 0.183; Fisher’s exact test) were not statistically significant. However, when all groups were compared, the power of the performed test (0.354) was below the desired power of 0.800 (i.e. one must be cautious in over-interpreting the lack of difference among them). In the conditions of this study, it was concluded that the treatment with PHA did not increase the rate of aggregation in the embryonic chimera production, even for half-embryos in advanced stage of development (morulae and blastocysts). Granted by FAPESP, Brazil: 06/06491-2 and 07/07705-9 (MFGN) and 07/04291-9 (MPMM).


2008 ◽  
Vol 20 (1) ◽  
pp. 183 ◽  
Author(s):  
B. Loureiro ◽  
L. Bonilla ◽  
G. Entrican ◽  
P. J. Hansen

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that has been implicated in preimplantation embryo development. Granulocyte-macrophage-CSF improves the proportion of bovine embryos that become blastocysts in vitro (Moraes and Hansen 1997 Biol. Reprod. 57, 1060–1065) and increases blastocyst cell numbers in mice (Robertson et al. 2001 Biol. Reprod. 64, 1206–1215). The long-term goal of the present research was to evaluate the effects of GM-CSF on post-transfer survival of bovine embryos. The experiments used recombinant ovine GM-CSF produced in transfected Chinese hamster ovary (CHO) cells or an equivalent volume of cytokine-free CHO cell supernatant (control). The objective of the first study was to evaluate the effects of GM-CSF on post-transfer survival. Embryos were cultured with 10 ng mL–1 of either GM-CSF or cytokine-free CHO cell supernatant added to culture medium at Day 1 after insemination. Embryos were transferred at Day 7 to lactating dairy cows according to a timed embryo transfer protocol. Pregnancy was evaluated at approximately Day 45 of gestation. There was no significant difference in the proportion of embryos becoming blastocysts at Day 7 after insemination (34.8 v. 37.5% for the control and GM-CSF; SEM = 2.4%). There was also no difference in pregnancy rates between cows receiving control embryos (6/24; 25%) and cows receiving embryos treated with GM-CSF (8/35; 23%). A second study determined the effects of various concentrations of GM-CSF on the development of in vitro-produced embryos to the blastocyst stage. Embryos were cultured in 5% (v/v) oxygen (low oxygen) or atmospheric oxygen (21%, w/v; high oxygen) in the presence of 0, 1, 10, or 100 ng mL–1 of GM-CSF or an equivalent volume of cytokine-free CHO cell supernatant (control). The GM-CSF was added on either Day 1 or Day 5 after insemination. Cleavage rate was accessed on Day 3 after insemination. Stage of development was recorded at Day 7 and Day 8 after insemination. There was no effect of GM-CSF on cleavage rate. Addition of GM-CSF at Day 5 to embryos cultured in low or high oxygen increased the percentage of oocytes that became blastocysts at Day 7 (P < 0.01) and Day 8 (P < 0.01), but addition at Day 1 did not have a significant effect on blastocyst development. The greatest effects of GM-CSF occurred at a concentration of 10 ng mL–1. At this concentration, least squares means for the percentage of oocytes that became blastocysts at Day 7 were 13.9 v. 21.6% (control v. GM-CSF) when GM-CSF was added at Day 5, and 19.5 v. 21.5% when GM-CSF was added at Day 1. The percentage of blastocysts at Day 8 was 20.9 v. 28.7% when GM-CSF was added at Day 5, and 26.7 v. 27.5% when GM-CSF was added at Day 1. In conclusion, GM-CSF can affect the competence of embryos to develop to the blastocyst stage, but at the concentrations and times given, there was no evidence that GM-CSF enhanced embryo survival after transfer.


Sign in / Sign up

Export Citation Format

Share Document