Image processing techniques for computer vision in the food and beverage industries

Author(s):  
N.A. Valous ◽  
D.-W. Sun
2019 ◽  
Vol 29 (1) ◽  
pp. 1226-1234
Author(s):  
Safa Jida ◽  
Hassan Ouallal ◽  
Brahim Aksasse ◽  
Mohammed Ouanan ◽  
Mohamed El Amraoui ◽  
...  

Abstract This work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Rian Rahmanda Putra ◽  
Fery Antony

<p align="center"><strong><em>Abstract <br /></em></strong></p><p><em>Computer vision is an image processing by a computer to obtain information from image captured through the camera generally used in real-time application. This paper reports on the results of research conducted on computer vision system designed to be able to recognize the image number (0-9) and mathematical operators (addition (+) and subtraction (-)) in a card number figures. Computer vision system designed in this study consists of a camera on the android phone that used to captured images on the card number and the computer that has artificial neural network perceptron algorithm in identifiying images. Both components of the computer vision system are connected wirelessly through the TCP/IP Protocol. At the training stage of Perceptron ANN, 10 samples for each number and mathematical operators are used. Computer vision system built in this study also have several image processing techniques such as greyscalling, thresholding, cropping and resizing. This techniques is used to filter the information from the images captured by camera in order to get the adequate and smaller image to be processed by ANN Perceptron. Stages of testing performed three times. First testing is given picture numbers 0-3, second testing is given picture number 4-7 and third testing is given number 8-9, addition symbol and subtraction symbol. Based on testing result, system built are able to recognize 10 from 12 image rendered with a success rate of 83.33%.</em></p><p><strong><em>Keywords</em></strong><em> : Computer vision, perceptron, card number</em></p><p><em> </em></p><p align="center"><strong><em>Abstrak <br /></em></strong></p><p><em>Computer vision merupakan proses pengolahan citra oleh computer untuk mendapatkan informasi dari citra yang ditangkap melalui kamera yang umumnya digunakan pada aplikasi waktu nyata. Tulisan ini melaporkan tentang hasil penelitian yang dilakukan tentang sistem computer vision yang dirancang untuk dapat mengenali gambar angka (0-9) dan operator matematika(penjumlahan (+) dan pengurangan (-)) pada permainan kartu angka. Sistem computer vision yang dirancang pada penelitian ini terdiri dari kamera pada ponsel android yang digunakan untuk menangkap gambar pada kartu angka dan komputer yang memiliki algoritama Jaringan Syaraf Tiruan Perceptron dalam melakukan identifikasi gambar. Kedua komponen sistem computer vision tersebut dihubungkan memlaui jaringan wireless melalui protocol TCP/IP. Pada tahapan pelatihan JST perceptron, digunakan 10 sample citra untuk masing – masing angka dan operator matematika yang akan dikenali oleh sistem. Pada penelitian ini juga dilakukan tahapan pemrosesan citra sebelum diolah oleh JST Perceptron baik dalam tahapan pelatihan maupun pada saat sistem dijalankan. Tahapan pengolahan citra yang digunakan pada penelitian ini adalah greyscalling, thresholding, cropping dan resizing. Hal ini dilakukan untuk menyaring informasi pada citra yang ditangkap oleh kamera agar didapatkan citra yang berukuran kecil dengan  informasi yang lengkap untuk diproses oleh JST Perceptron. Pada saat sistem diuji coba, diberikan 4 deret kartu angka di depan kamera. Pada pengujian pertama diberikan gambar angka 0-3, pengujian kedua diberikan gambar angka 4-7 dan pada pengujian ketiga diberikan angka 8-9 serta gambar operator penjumlahan dan pengurangan. Berdasarkan pengujian yang dilakukan, sistem computer vision yang dirancang mampu mengenali 10dari 12 gambar yang diberikan dengan tingkat keberhasilan sebesar 83.33%.</em></p><p><strong><em>Kata Kunci </em></strong><em>: computer vision, perceptron, kartu angka</em></p>


Author(s):  
Harshal S. Deshmukh ◽  
Dr. S. W. Mohod ◽  
Dr. N. N. Khalsa

Grading and classification of fruits is based on observations and through experiences. The system exerts image- processing techniques for classification and grading the quality of fruits. Two-dimensional fruit images are classified on shape and color-based analysis methods. However, different fruit images have different or same color and shape values. Hence, using color or shape analysis methods are still not that much effective enough to identify and distinguish fruits images. Therefore, computer vision and image processing techniques have been found increasingly useful in the food industry, especially for applications in quality detection. Research in this area indicates the feasibility of using computer vision systems to improve product quality, the use of computer vision for the inspection of food has increased during recent years. This proposed work presents food quality detection system. The system design considers some feature that includes fruit colors and size, which increases accuracy for detection of roots pixels. Histogram of oriented gradients is used for background removal, for color classification, support vector machine is used.


Author(s):  
Deepayan Bhowmik ◽  
Mehryar Emambakhsh

Security is a fundamental issue in today's world. In this chapter we discuss various aspects of security in daily life that can be solved using image processing techniques by grouping in three main categories: visual tracking, biometrics and digital media security. Visual tracking refers to computer vision techniques that analyses the scene to extract features representing objects (e.g., pedestrian) and track them to provide input to analyse any anomalous behaviour. Biometrics is the technology of detecting, extracting and analysing human's physical or behavioural features for identification purposes. Digital media security typically includes multimedia signal processing techniques that can protect copyright by embedding information within the media content using watermarking approaches. Individual topics are discussed referring recent literature.


Drowsiness is major cause of accidents. So, this drowsiness detection system alerts the drowsy drivers in order to reduce the risk of potential accidents. The proposed system uses computer vision and image processing technology of MATLAB for detecting the drowsiness. MATLAB detects if eyes are closed or open using various image processing techniques performed using Viola-Jones face features detecting algorithm and skin y,cb,cr values detection function ,converting image into a binary image which was further employed to extract eye characteristics, and its closing frequency, determining drowsiness.


Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2019 ◽  
Vol 7 (5) ◽  
pp. 165-168 ◽  
Author(s):  
Prabira Kumar Sethy ◽  
Swaraj Kumar Sahu ◽  
Nalini Kanta Barpanda ◽  
Amiya Kumar Rath

Sign in / Sign up

Export Citation Format

Share Document