scholarly journals Fruit Quality Detection and Gradation

Author(s):  
Harshal S. Deshmukh ◽  
Dr. S. W. Mohod ◽  
Dr. N. N. Khalsa

Grading and classification of fruits is based on observations and through experiences. The system exerts image- processing techniques for classification and grading the quality of fruits. Two-dimensional fruit images are classified on shape and color-based analysis methods. However, different fruit images have different or same color and shape values. Hence, using color or shape analysis methods are still not that much effective enough to identify and distinguish fruits images. Therefore, computer vision and image processing techniques have been found increasingly useful in the food industry, especially for applications in quality detection. Research in this area indicates the feasibility of using computer vision systems to improve product quality, the use of computer vision for the inspection of food has increased during recent years. This proposed work presents food quality detection system. The system design considers some feature that includes fruit colors and size, which increases accuracy for detection of roots pixels. Histogram of oriented gradients is used for background removal, for color classification, support vector machine is used.

Drowsiness is major cause of accidents. So, this drowsiness detection system alerts the drowsy drivers in order to reduce the risk of potential accidents. The proposed system uses computer vision and image processing technology of MATLAB for detecting the drowsiness. MATLAB detects if eyes are closed or open using various image processing techniques performed using Viola-Jones face features detecting algorithm and skin y,cb,cr values detection function ,converting image into a binary image which was further employed to extract eye characteristics, and its closing frequency, determining drowsiness.


2019 ◽  
Vol 29 (1) ◽  
pp. 1226-1234
Author(s):  
Safa Jida ◽  
Hassan Ouallal ◽  
Brahim Aksasse ◽  
Mohammed Ouanan ◽  
Mohamed El Amraoui ◽  
...  

Abstract This work intends to apprehend and emphasize the contribution of image-processing techniques and computer vision in the treatment of clay-based material known in Meknes region. One of the various characteristics used to describe clay in a qualitative manner is porosity, as it is considered one of the properties that with “kill or cure” effectiveness. For this purpose, we use scanning electron microscopy images, as they are considered the most powerful tool for characterising the quality of the microscopic pore structure of porous materials. We present various existing methods of segmentation, as we are interested only in pore regions. The results show good matching between physical estimation and Voronoi diagram-based porosity estimation.


Author(s):  
Aishwarya .R

Abstract: Lung cancer has been a major contribution to mortality rates world-wide for many years now. There is a need for early diagnosis of lung cancer which if implemented, will help in reducing mortality rates. Recently, image processing techniques have been widely applied in various medical facilities for accurate detection and diagnosis of abnormality in the body images like in various cancers such as brain tumour, breast tumour and lung tumour. This paper is a development of an algorithm based on medical image processing to segment the lung tumour in CT images due to the lack of such algorithms and approaches used to detect tumours. The work involves the application of different image processing tools in order to arrive at the desired result when combined and successively applied. The segmentation system comprises different steps along the process. First, Image preprocessing is done where some enhancement is done to enhance and reduce noise in images. In the next step, the different parts in the images are separated to be able to segment the tumour. In this phase threshold value was selected automatically. Then morphological operation (Area opening) is implemented on the thresholded image. Finally, the lung tumour is accurately segmented by subtracting the opened image from the thresholded image. Support Vector Machine (SVM) classifier is used to classify the lung tumour into 4 different types: Adenocarcinoma(AC), Large Cell Carcinoma(LCC) Squamous Cell Carcinoma(SCC), and No tumour (NT). Keywords: Lung tumour; image processing techniques; segmentation; thresholding; image enhancement; Support Vector Machine; Machine learning;


2020 ◽  
Vol 56 ◽  
pp. 101659 ◽  
Author(s):  
Chung-Feng Jeffrey Kuo ◽  
Chang-Chiun Huang ◽  
Jing-Jhong Siao ◽  
Chia-Wen Hsieh ◽  
Vu Quang Huy ◽  
...  

The mortality rate is increasing among the growing population and one of the leading causes is lung cancer. Early diagnosis is required to decrease the number of deaths and increase the survival rate of lung cancer patients. With the advancements in the medical field and its technologies CAD system has played a significant role to detect the early symptoms in the patients which cannot be carried out manually without any error in it. CAD is detection system which has combined the machine learning algorithms with image processing using computer vision. In this research a novel approach to CAD system is presented to detect lung cancer using image processing techniques and classifying the detected nodules by CNN approach. The proposed method has taken CT scan image as input image and different image processing techniques such as histogram equalization, segmentation, morphological operations and feature extraction have been performed on it. A CNN based classifier is trained to classify the nodules as cancerous or non-cancerous. The performance of the system is evaluated in the terms of sensitivity, specificity and accuracy


The Lung Cancer is a most common cancer which causes of death to people. Early detection of this cancer will increase the survival rate. Usually, cancer detection is done manually by radiologists that had resulted in high rate of False Positive (FP) and False Negative (FN) test results. Currently Computed Tomography (CT) scan is used to scan the lung, which is much efficient than X-ray. In this proposed system a Computer Aided Detection (CADe) system for detecting lung cancer is used. This proposed system uses various image processing techniques to detect the lung cancer and also to classify the stages of lung cancer. Thus the rates of human errors are reduced in this system. As the result, the rate of obtaining False positive and (FP) False Negative (FN) has reduced. In this system, MATLAB have been used to process the image. Region growing algorithm is used to segment the ROI (Region of Interest). The SVM (Support Vector Machine) classifier is used to detect lung cancer and to identify the stages of lung cancer for the segmented ROI region. This proposed system produced 98.5 % accuracy when compared to other existing system


India is an agricultural country where most of people are depends on the agriculture. When Plants are infected by the virus, fungus and bacteria, they are mostly seen on leaves and stems of the plants. Because of that, plants production is decreased also economy of the country is decreased. The farmer has to identify the disease and decide which pesticide will be used to control the disease in plants. To finding out which disease affect the plants, the farmer contacts the expert for the solution. The expert gives the advice based on its knowledge and information but sometimes seeking the expert advice is time consuming, expensive and may be not accurate. So, to solve this problem, the image processing techniques and Machine Learning algorithm like Neural Network, Fuzzy Logic and Support Vector Machine gives the better, accurate and affordable solution to control the plants disease than manual method.


Sign in / Sign up

Export Citation Format

Share Document