Buckling failure of structures consisting of curved plates

Author(s):  
P. Ansourian
Keyword(s):  
2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Jungwon Huh ◽  
In-Tae Kim ◽  
Jin-Hee Ahn

The shear buckling failure and strength of a web panel stiffened by stiffeners with corrosion damage were examined according to the degree of corrosion of the stiffeners, using the finite element analysis method. For this purpose, a plate girder with a four-panel web girder stiffened by vertical and longitudinal stiffeners was selected, and its deformable behaviors and the principal stress distribution of the web panel at the shear buckling strength of the web were compared after their post-shear buckling behaviors, as well as their out-of-plane displacement, to evaluate the effect of the stiffener in the web panel on the shear buckling failure. Their critical shear buckling load and shear buckling strength were also examined. The FE analyses showed that their typical shear buckling failures were affected by the structural relationship between the web panel and each stiffener in the plate girder, to resist shear buckling of the web panel. Their critical shear buckling loads decreased from 82% to 59%, and their shear buckling strength decreased from 88% to 76%, due to the effect of corrosion of the stiffeners on their shear buckling behavior. Thus, especially in cases with over 40% corrosion damage of the vertical stiffener, they can have lower shear buckling strength than their design level.


1992 ◽  
Vol 44 (3) ◽  
pp. 515-524 ◽  
Author(s):  
S.C. Lin ◽  
T.Y. Kam

2014 ◽  
Vol 915-916 ◽  
pp. 146-149
Author(s):  
Yong Sheng Wang ◽  
Li Hua Wu

The finite element model of the space KX-Joint was established using ANSYS software, and the failure mode and ultimate bearing capacity of KX-joint were researched. Calculation results show that the surface of chord wall on the roots of compression web members was into the plastic in K plane, and the holding pole without the plastic area and the local buckling failure happened in the surface of chord wall on the roots of Compression Web Members in X plane; The bearing capacity of the joint increased with the Chord diameter, which was appears in the form of power function.


2019 ◽  
Vol 25 (8) ◽  
pp. 805-818 ◽  
Author(s):  
Charlotte Mercier ◽  
Abdelouahab Khelil ◽  
Ali Khamisi ◽  
Firas Al Mahmoud ◽  
Rémi Boissiere ◽  
...  

Stresses of a structure are determined with a first or a second order analysis. The choice of the method is guided by the potential influence of the structure’s deformation. In general, considering their low rigidity with regard to those of buildings, scaffolding and shoring structures quickly reach buckling failure. Imperfections, such as structural defects or residual stresses, generate significant second order effects which have to be taken into account. The main challenge is to define these imperfections and to include them appropriately in the calculations. The present study suggests a new approach to define all the structure’s imperfections as a unique imperfection, based on the shape of elastic critical buckling mode of the structure. This study proposes a method allowing to determine the equation of the elastic critical buckling mode from the eigenvectors of the second order analysis of the structure. Subsequently, a comparative study of bending moments of different structures calculated according to current Eurocode 3 or 9 methods or according to the new method is performed. The obtained results prove the performance of the proposed method.


2016 ◽  
Vol 145 (5) ◽  
pp. 054704 ◽  
Author(s):  
YinBo Zhu ◽  
FengChao Wang ◽  
HengAn Wu

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Nima Mohajer Rahbari ◽  
Mengying Xia ◽  
Xiaoben Liu ◽  
J. J. Roger Cheng ◽  
Millan Sen ◽  
...  

In service pipelines exhibit bending loads in a variety of in-field situation. These bending loads can induce large longitudinal strains, which may trigger local buckling on the pipe's compressive side and/or lead to rupture of the pipe's tensile side. In this article, the post-buckling failure modes of pressurized X65 steel pipelines under monotonic bending loading conditions are studied via both experimental and numerical investigations. Through the performed full-scale bending test, it is shown that the post-buckling rupture is only plausible to occur in the pipe wall on the tensile side of the wrinkled cross section under the increased bending. Based on the experimental results, a finite element (FE)-based numerical model with a calibrated cumulative fracture criterion was proposed to conduct a parametric analysis on the effects of the internal pressure on the pipe's failure modes. The results show that the internal pressure is the most crucial variable that controls the ultimate failure mode of a wrinkled pipeline under monotonic bending load. And the post-buckling rupture of the tensile wall can only be reached in highly pressurized pipes (hoop stress no less than 70% SMYS for the investigated X65 pipe). That is, no postwrinkling rupture is likely to happen below a certain critical internal pressure even after an abrupt distortion of the wrinkled wall on the compressive side of the cross section.


1950 ◽  
Vol 17 (1) ◽  
pp. 73-83 ◽  
Author(s):  
L. H. Donnell ◽  
C. C. Wan

Abstract Von Kármán and Tsien have shown that under elastic conditions the resistance of perfect thin cylinders subjected to axial compression drops precipitously after buckling. It is considered that this indicates that this type of buckling is very sensitive to imperfections or disturbances. In this paper the effects of certain imperfections of shape (assumed to be equivalent to all the actual defects or disturbances combined) are studied by the large-deflection shell theory developed in a previous paper (2). It is found that two types of buckling failure may occur. One is of a purely elastic type which occurs when the peak of the average stress versus average strain curve is reached, while the other type is precipitated by yielding, which for thicker cylinders or lower-yield material may occur before such a peak is reached. Curves are derived giving the dependence of each type of failure upon the dimensions and elastic and yield properties of the specimen and also upon an “unevenness factor” U which determines the magnitude of the initial imperfections and is assumed to depend on the method of fabrication. The relations derived are in line with test results, and similar studies of the buckling of struts indicate that the magnitude of the initial imperfections which have to be assumed to explain test strengths are reasonable.


Sign in / Sign up

Export Citation Format

Share Document