scholarly journals Characterization and Fine Mapping of a Yellow-Virescent Gene Regulating Chlorophyll Biosynthesis and Early Stage Chloroplast Development in Brassica napus

2020 ◽  
Vol 10 (9) ◽  
pp. 3201-3211 ◽  
Author(s):  
Chuanji Zhao ◽  
Lijiang Liu ◽  
Luqman Bin Safdar ◽  
Meili Xie ◽  
Xiaohui Cheng ◽  
...  

Abstract Chlorophyll biosynthesis and chloroplast development are crucial to photosynthesis and plant growth, but their regulatory mechanism remains elusive in many crop species. We isolated a Brassica napus yellow-virescent leaf (yvl) mutant, which exhibited yellow-younger-leaf and virescent-older-leaf with decreased chlorophyll accumulation and delayed chloroplast development. We mapped yvl locus to a 70-kb interval between molecular markers yvl-O10 and InDel-O6 on chromosome A03 in BC2F2 population using whole genome re-sequencing and bulked segregant analysis. The mutant had a ‘C’ to ‘T’ substitution in the coding sequence of BnaA03.CHLH, which encodes putative H subunit of Mg-protoporphyrin IX chelatase (CHLH). The mutation resulted in an imperfect protein structure and reduced activity of CHLH. It also hampered the plastid encoded RNA polymerase which transcribes regulatory genes of photosystem II and I. Consequently, the chlorophyll a/b and carotenoid contents were reduced and the chloroplast ultrastructure was degraded in yvl mutant. These results explain that a single nucleotide mutation in BnaA03.CHLH impairs PEP activity to disrupt chloroplast development and chlorophyll biosynthesis in B. napus.

2018 ◽  
Vol 143 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Lingyan Chen ◽  
Jinli Lai ◽  
Tianyou He ◽  
Jundong Rong ◽  
Muhammad Waqqas Khan Tarin ◽  
...  

Variegated temple bamboo (Sinobambusa tootsik f. luteoloalbostriata) is a species of ornamental bamboo (Bambusoideae) that has gained popularity because of its striped or variegated leaves. In this study, a series of experiments was conducted to determine the factors contributing to the leaf color of this species, which included the content of the photosynthetic pigments and the chlorophyll biosynthetic precursors, the photosynthetic parameters, and the microstructure and ultrastructure of the different phenotypes. Discoloration in the leaves of variegated temple bamboo plants is attributed to two possible pathways. One was a block in chlorophyll biosynthesis, which led to the failure in biosynthesis of the thylakoid membrane. The other one was a disruption in chloroplast development. The lack of thylakoid membrane may have inhibited the conversion of coproporphyrinogen III (Coprogen III) to protoporphyrin IX (Proto IX) during the chlorophyll biosynthesis because the enzyme responsible for this conversion, protogen oxidase, is bound to the thylakoid membrane. The abnormalities in chloroplasts and a low concentration of chlorophyll in the variegated leaves led to a significantly lower photosynthetic rate than in the entirely green leaves, as demonstrated in the light-response curve.


2021 ◽  
Vol 25 (04) ◽  
pp. 915-920
Author(s):  
Yu Jiang

Magnesium protoporphyrin IX methyltransferase (ChlM) plays an important role in the regulation of chlorophyll biosynthesis and chloroplast development. In the present study, we isolated a ChlM gene, designated ClChlM, from Cymbidium [Cymbidium longibracteatum (Wu & Chen) Chen & Liu]. The open reading frame (ORF) sequence of ClChlM was 945 bp and encoded a putative protein of 314 amino acids. The deduced ClChlM contained the conserved SAM/SAH binding pocket and substrate binding sites. Subcellular localization analysis of ClChlM revealed that the protein was localized in the chloroplast. Ectopic overexpression of ClChlM in tobacco (Nicotiana benthamiana Domin) increased ALA-synthesizing capacity and chlorophyll content and widely upregulated the expression level of photosynthesis-related genes, such as ClHemA, ClGSA, ClLhcb, ClCHLI, and ClCHLH. In conclusion, these results demonstrate that ClChlM plays a crucial role in the regulation of chlorophyll biosynthesis in C. longibracteatum and will help in breeding for leaf colour variance in the future. © 2021 Friends Science Publishers


2021 ◽  
Author(s):  
Tingting Liu ◽  
Baolong Tao ◽  
Hanfei Wu ◽  
Jing Wen ◽  
Bin Yi ◽  
...  

2013 ◽  
Vol 33 (2) ◽  
pp. 349-362 ◽  
Author(s):  
Rachel Wells ◽  
Martin Trick ◽  
Eleni Soumpourou ◽  
Leah Clissold ◽  
Colin Morgan ◽  
...  
Keyword(s):  
Seed Oil ◽  

1981 ◽  
Vol 36 (5-6) ◽  
pp. 421-430 ◽  
Author(s):  
H. K. Lichtenthaler ◽  
G. Burkard ◽  
G. Kuhn ◽  
U. Prenzel

Abstract Illumination of 3 day old etiolated radish seedlings with continuous white light results in a progressive accumulation of chlorophyll a and b. Both pigments are bound in a different way to the thylakoid chlorophyll-proteins, which appear parallel to the formation of chlorophylls. By applying the SDS-PAGE method to SDS-digested chloroplasts, it was possible to show that the chloroplasts of radish cotyledons contain the typical chlorophyll proteins LHCP1-3, CPa, CPI and CPIa which have been found in other plants. Between LHCP1 and CPI an additional chlorophyll protein is detected with the spectral properties of a LHCP; it is termed here LHCPy. When the green plants are transferred to continuous darkness, chlorophylls and the chlorophyll-proteins are progressively degraded. At an early stage of greening chlorophyll b is destroyed at a much higher rate in darkness than chlorophyll a, which yields high chlorophyll a/b ratios. This is paralleled by a faster decrease in the level of the corresponding chloro­phyll a/b-protein LHCP3 than of CPI. At a later stage of greening, after the end of the logarithmic chlorophyll accumulation, the chlorophylls a and b and also the LHCP3 and CPI are destroyed in continuous darkness at equal rates; the a/b ratios and the LHCP3/CPI ratios are then little different from the light control. The data indicate that at an early stage of greening the light-harvesting chlorophyll a/b-protein LHCP3 is less stable than the other chlorophyll-proteins (CPI, CPIa, CPa), which contain pre­ dominantly chlorophyll a. The ratio chlorophyll a to β-carotene (a/c ratio) of CPIa, CPI and CPa is about 10, while that of the LHCP1-3 is found to be between 150 to 300. We therefore propose using the a/c ratio to define the chlorophyll-proteins which, besides the absorption spectra, is the most suitable parameter.


2020 ◽  
Vol 21 (17) ◽  
pp. 6137
Author(s):  
Ji-Yu Zhang ◽  
Tao Wang ◽  
Zhan-Hui Jia ◽  
Zhong-Ren Guo ◽  
Yong-Zhi Liu ◽  
...  

Pecan is one of the most famous nut species in the world. The phenotype of mutants with albino leaves was found in the process of seeding pecan, providing ideal material for the study of the molecular mechanisms leading to the chlorina phenotype in plants. Both chlorophyll a and chlorophyll b contents in albino leaves (ALs) were significantly lower than those in green leaves (GLs). A total of 5171 differentially expression genes (DEGs) were identified in the comparison of ALs vs. GLs using high-throughput transcriptome sequencing; 2216 DEGs (42.85%) were upregulated and 2955 DEGs (57.15%) were downregulated. The expressions of genes related to chlorophyll biosynthesis (HEMA1, encoding glutamyl-tRNA reductase; ChlH, encoding Mg-protoporphyrin IX chelatase (Mg-chelatase) H subunit; CRD, encoding Mg-protoporphyrin IX monomethylester cyclase; POR, encoding protochlorophyllide reductase) in ALs were significantly lower than those in GLs. However, the expressions of genes related to chlorophyll degradation (PAO, encoding pheophorbide a oxygenase) in ALs were significantly higher than those in GLs, indicating that disturbance of chlorophyll a biosynthesis and intensification of chlorophyll degradation lead to the absence of chlorophyll in ALs of pecan. A total of 72 DEGs associated with photosynthesis pathway were identified in ALs compared to GLs, including photosystem I (15), photosystem II (19), cytochrome b6-f complex (3), photosynthetic electron transport (6), F-type ATPase (7), and photosynthesis-antenna proteins (22). Moreover, almost all the genes (68) mapped in the photosynthesis pathway showed decreased expression in ALs compared to GLs, declaring that the photosynthetic system embedded within the thylakoid membrane of chloroplast was disturbed in ALs of pecan. This study provides a theoretical basis for elucidating the molecular mechanism underlying the phenotype of chlorina seedlings of pecan.


2013 ◽  
Vol 5 (1) ◽  
pp. 114-119 ◽  
Author(s):  
Özlem ÖZBEK ◽  
Betül Uçar GIDIK

In cultivated commercial crop species, genetic diversity tends to decrease because of the extensive breeding processes. Therefore, germplasm of commercial crop species, such as Brassica napus L. should be evaluated and the genotypes, which have higher genetic diversity index, should be addressed as potential parental cross materials in breeding programs. In this study, the genetic diversity was analysed by using randomly amplified polymorphic DNA analysis (RAPD) technique in nine Turkish commercial rapeseed varieties. The RAPD primers (10-mer oligonucleotides) produced 51 scorable loci, 31 loci of which were polymorphic (60.78%) and 20 loci (39.22%) were monomorphic The RAPD bands were scored as binary matrix data and were analysed using POPGENE version 1.32. At locus level, the values of genetic diversity within population (Hs) and total (HT) were 0.15 and 0.19 respectively. The genetic differentiation (GST) and the gene flow (Nm) values between the populations were 0.20 and 2.05 respectively. The mean number of alleles (na), the mean number of effective alleles (nae), and the mean value of genetic diversity (He) were 2.00, 1.26, and 0.19 respectively. According to Pearson’s correlation, multiple regression and principal component analyses, eco-geographical conditions in combination had significant effect on genetic indices of commercial B. napus L. varieties were discussed.


2012 ◽  
Vol 30 (8) ◽  
pp. 798-802 ◽  
Author(s):  
Andrea L Harper ◽  
Martin Trick ◽  
Janet Higgins ◽  
Fiona Fraser ◽  
Leah Clissold ◽  
...  
Keyword(s):  

1977 ◽  
Vol 4 (4) ◽  
pp. 541 ◽  
Author(s):  
CJ Pearson ◽  
DG Bishop ◽  
M Vesk

Studies were made of the effects of growth temperatures and transition to colder temperature on chloroplast ultrastructure, chlorophyll accumulation, lipids and protein of two Pennisetum americanum cultivars and a P. americanum × P. purpureum biotype which differed in temperature sensitivity. All genotypes had structure and chlorophyll distribution consistent with NADP-malic enzyme C4 systems and lipid phase transitions at temperatures similar to those of other 'chilling-sensitive' plants. All accumulated less starch at low temperature and there was mobilization of starch, aggregation of thylakoids in mesophyll chloroplasts and swelling of loculi on transition from 24/19 to 18/13°C. Intolerance of Pennisetum to low temperature was clearly not due to accumulation of starch, nor were genotypic differences in temperature sensitivity related to starch. The cold susceptibility of cv. Ingrid Pearl, in contrast with the tolerance of the intraspecific and interspecific hybrids, was associated with inability to accumulate chlorophyll in the mesophyll of some leaves; fluctuations in chlorophyll a/b ratios within 5 days of transition to lower temperature; and inability to accumulate higher concentrations of soluble proteins in apparently normal leaves grown at 18/13°C. Genotypic differences in temperature sensitivity did not appear related to the physical properties of membranes, which did not change within 5 days of transition to 18/13°C.


2020 ◽  
Vol 71 (19) ◽  
pp. 5976-5989
Author(s):  
Xuyan Li ◽  
Yanming Hou ◽  
Xin Xie ◽  
Hongxue Li ◽  
Xiaodong Li ◽  
...  

Abstract Color change is an important event during fruit maturation in blueberry, usually depending on chlorophyll degradation and anthocyanin accumulation. MicroRNA156 (miR156)–SPL modules are an important group of regulatory hubs involved in the regulation of anthocyanin biosynthesis. However, little is known regarding their roles in blueberry or in chlorophyll metabolism during color change. In this study, a MIR156 gene (VcMIR156a) was experimentally identified in blueberry (Vaccinium corymbosum). Overexpression of VcMIR156a in tomato (Solanum lycopersicum) enhanced anthocyanin biosynthesis and chlorophyll degradation in the stem by altering pigment-associated gene expression. Further investigation indicated that the VcSPL12 transcript could be targeted by miR156, and showed the reverse accumulation patterns during blueberry fruit development and maturation. Noticeably, VcSPL12 was highly expressed at green fruit stages, while VcMIR156a transcripts mainly accumulated at the white fruit stage when expression of VcSPL12 was dramatically decreased, implying that VcMIR156a–VcSPL12 is a key regulatory hub during fruit coloration. Moreover, VcSPL12 decreased the expression of several anthocyanin biosynthetic and regulatory genes, and a yeast two-hybrid assay indicated that VcSPL12 interacted with VcMYBPA1. Intriguingly, expression of VcSPL12 significantly enhanced chlorophyll accumulation and altered the expression of several chlorophyll-associated genes. Additionally, the chloroplast ultrastructure was altered by the expression of VcMIR156a and VcSPL12. These findings provide a novel insight into the functional roles of miR156–SPLs in plants, especially in blueberry fruit coloration.


Sign in / Sign up

Export Citation Format

Share Document