scholarly journals Dynamic Behavior of Functionally Graded Beams in Thermal Environment due to a Moving Harmonic Load

Author(s):  
Thanh Trinh ◽  
Van Bui ◽  
Ngoc Nguyen ◽  
DinhKien Nguyen ◽  
Buntara Gan
2020 ◽  
Vol 58 (6) ◽  
pp. 760
Author(s):  
Kien Dinh Nguyen

Vibration of two-directional functionally graded sandwich (2D-FGSW) Timoshenko beams under a moving harmonic load is investigated. The beams consist of three layers, a homogeneous core and two functionally graded skin layers with the material properties continuously varying in both the thickness and length directions by power functions. A finite element formulation is derived and employed to compute the vibration characteristics of the beams. The obtained numerical result reveals that the material inhomogeneity and the layer thickness ratio play an important role on the natural frequencies and dynamic response of the beams. A parametric study is carried out to highlight the effects of the power-law indexes, the moving load speed and excitation frequency on the vibration characteristics of the beams.  The influence of the beam aspect ratio on the vibration of the beams is also examined and discussed. 


2019 ◽  
Vol 20 (01) ◽  
pp. 2050003 ◽  
Author(s):  
Van Hai Luong ◽  
Tan Ngoc Than Cao ◽  
Qui X. Lieu ◽  
Xuan Vu Nguyen

This paper presents the moving element method (MEM) for dynamic analyses of functionally graded (FG) plates resting on Pasternak foundation under moving harmonic load. The Mindlin plate theory is used to model the FG plates. Macroscopic material properties of FG plates are assumed to continuously vary across the thickness direction by a simple power-law distribution. The governing equation of the FG plate is formulated in a coordinate system which moves along with the applied load. In addition, the method simply treats the moving load as “stationary” at the discretized node of plate to completely eliminate the update procedure of force vector due to the change of contact point with elements. To verify the accuracy of the computational paradigm, static and free vibration analyses of FG plates are examined first. Dynamic analyses of FG plates subjected to a moving harmonic load are then conducted to investigate the effects of various parameters such as volume fraction exponent, Young’ modulus, load velocity, foundation damping coefficient and load acceleration/deceleration on dynamic responses of the plate.


2019 ◽  
Vol 8 (1) ◽  
pp. 250-260 ◽  
Author(s):  
Mehdi Alimoradzadeh ◽  
Mehdi Salehi ◽  
Sattar Mohammadi Esfarjani

Abstract In recent years, structures made of Functionally Graded materials (FGMs) are used in industries due to the continuously compositional variation of the constituents in FGMs along different directions. In order to develop FGMs, nonlinear vibration analysis to study dynamic behavior is needed. This study proposes nonlinear vibration analysis of a simply supported axially functionally graded (AFG) beam subjected to a moving harmonic load as an Euler-Bernoulli beam utilizing Green’s strain tensor. Axial variation of material properties of the beam is based on the power law. The governing equations of motion are derived via Hamilton’s principle. The Galerkin’s method is implemented to reduce the nonlinear partial differential equations of the system to a number of nonlinear ordinary differential equations. He’s variational method is applied to obtain approximate analytical expressions for the nonlinear frequency and the nonlinear dynamic response of the AFG beam. The effect of some parameters such as the power index and stiffness coefficients, among others, on the nonlinear natural frequency has been investigated. The influence of above mentioned parameters as well as the velocity of the moving harmonic load on the nonlinear dynamic response has been studied. The results indicate that these parameters have a considerable effect on both nonlinear natural frequency and response amplitude.


2021 ◽  
pp. 107754632110065
Author(s):  
Hamid Aris ◽  
Habib Ahmadi

In this work, nonlinear forced vibrations of truncated conical shells are presented using a semi-analytical method. The material properties are varied along the thickness direction as a power law distribution. The functionally graded truncated conical shells are exposed to external harmonic load and placed in the thermal environment and have an initial imperfection. Furthermore, the functionally graded truncated conical shells rests on generalized nonlinear viscoelastic foundations which consisted of a Winkler and Pasternak foundation parameters augmented by a Kelvin–Voigt viscoelastic model and a nonlinear cubic stiffness. The fundamental equations are extracted using first-order shear deformation theory in conjunction with nonlinear von Kármán relationships. The partial differential equations of truncated conical shells are reduced through Galerkin’s method, and the result is extracted using the multiple scales method. To analyze the resonance analyses, a two-term external excitation is considered. In this regard, various secondary resonances are investigated, and finally, the analyses about combination resonances are represented. To investigate the presented approach, a comparison study is performed with those addressed by other researchers. To analyze the nonlinear combination resonance behavior of truncated conical shells, the effect of geometrical characteristics, material properties, power law index, thermal effects, external load amplitude, and initial imperfection are examined. Finally, the steady-state responses of the nonlinear system are analyzed. As one of the most interesting results, the softening behavior of truncated conical shells with inverse quadratic distribution is the most, and for the quadratic distribution is the least.


2014 ◽  
Vol 1 (3) ◽  
pp. CM0013-CM0013
Author(s):  
Thi Ha LE ◽  
Buntara Sthenly GAN ◽  
Thanh Huong TRINH ◽  
Dinh Kien NGUYEN

Sign in / Sign up

Export Citation Format

Share Document