SELECTION OF A SYSTEM OF INFORMATIVE FEATURES FOR CROP CLASSIFICATION USING HYPERSPECTRAL DATA

2020 ◽  
2014 ◽  
Vol 675-677 ◽  
pp. 1153-1157
Author(s):  
Xue Jiao Hou ◽  
Jing Liu ◽  
Wei Cui

Beased on in Situ Water Quality Data and Hyperspectral Data from HJ-1A satellite in Chaohu Lake, through Contrasting the Object-Oriented Chlorophyll-a Inversion Precision Of single Band with Two-Band Model, the Results Show: (1) In Hyperspectral Object-Oriented Remote Sensing inversion, the Inversion Effect of Choosing Combination Model to Segment Is superior to that of Choosing the Single Band Directly, and Using Combination model to Segment can Certain Degree Solve the Problem that Commercial Softwares cannot Segment all Hyperspectral Data at the same Time.(2)When Inversing Chlorophyll-a Concentration with Hyperspectral Data, the Single Bands Constituting the Optimal Model Are not Always in the Traditional Characteristics Band Range of Chlorophyll-a. so All bands should be Comprehensively Analyzed to take Full Advantages Of hyperspectral Data when Inversing. these Conclusions Will provide Basis for the Future Segmentation Object Selection of Object-Orientedon Hyperspectral Lakes Chlorophyll-a Inversion and Certain Reference for Band Selection of Hyperspectral Inversion Model.


Crop identification (CI) utilizing hyperspectral pictures/images (HSI) collected from satellite is one of the effective research area considering various agriculture related applications. Wide range of research activity is carried out and modelled in the area of crop recognition (CR) for building efficient model. Correlation filter (CF) is considered to be one of an effective method and are been applied by existing methodologies for identifying similar signal features. Nonetheless, very limited is work is carried out using CF for crop classification using hyperspectral data. Further, effective method is required that bring good tradeoffs between memory and computational overhead. The crop classification model can be improved by combining machine learning (ML) technique with CF. HSI is composed of hundreds of channels with large data dimension that gives entire information of imaging. Thus, using classification model is very useful for real-time application uses. However, the accuracy of classification task is affected as HSI is composed of high number of redundant and correlated feature sets. Along with, induce computational overhead with less benefits using redundant features. Thus, effective band selection, texture analysis, and classification method is required for accurately classifying multiple crops. This paper analyses various existing techniques for identification and classification of crops using satellite imagery detection method. Then, identify the research issues, challenges, and problems of existing model for building efficient techniques for identification and classification of crops using satellite image. Experiment are conducted on standard hyperspectral data. The result attained shows proposed model attain superior classification accuracy when compared with existing hyperspectral image classification model.


2019 ◽  
Vol 11 (9) ◽  
pp. 1020 ◽  
Author(s):  
Bollandsås ◽  
Ørka ◽  
Dalponte ◽  
Gobakken ◽  
Næsset

In forest management, site index information is essential for planning silvicultural operations and forecasting forest development. Site index is most commonly expressed as the average height of the dominant trees at a certain index age, and can be determined either by photo interpretation, field measurements, or projection of age combined with height estimates from remote sensing. However, recently it has been shown that site index can be accurately predicted from bi-temporal airborne laser scanner (ALS) data. Furthermore, single-time hyperspectral data have also been shown to be correlated to site index. The aim of the current study was to compare the accuracy of modelling site index using (1) data from bi-temporal ALS; (2) single-time hyperspectral data with different types of preprocessing; and (3) combined bi-temporal ALS and single-time hyperspectral data. The period between the ALS acquisitions was 11 years. The preprocessing of the hyperspectral data included an atmospheric correction and/or a normalization of the reflectance. Furthermore, a selection of pixels was carried out based on NDVI and compared to using all pixels. The results showed that bi-temporal ALS data explained about 70% (R2) of the variation in the site index, and the RMSE values from a cross-validation were 3.0 m and 2.2 m for spruce- and pine-dominated plots, respectively. Corresponding values for the different single-time hyperspectral datasets were 54%, 3.9 m, and 2.5 m. With bi-temporal ALS data and hyperspectral data used in combination, the results indicated that the contribution from the hyperspectral data was marginal compared to just using bi-temporal ALS. We also found that models constructed with normalized hyperspectral data produced lower RMSE values compared to those constructed with atmospherically corrected data, and that a selection of pixels based on NDVI did not improve the results compared to using all pixels.


2020 ◽  
Vol 12 (12) ◽  
pp. 1983
Author(s):  
Kevin Chow ◽  
Dion Eustathios Olivier Tzamarias ◽  
Miguel Hernández-Cabronero ◽  
Ian Blanes ◽  
Joan Serra-Sagristà

This paper examines the various variable-length encoders that provide integer encoding to hyperspectral scene data within a k 2 -raster compact data structure. This compact data structure leads to a compression ratio similar to that produced by some of the classical compression techniques. This compact data structure also provides direct access for query to its data elements without requiring any decompression. The selection of the integer encoder is critical for obtaining a competitive performance considering both the compression ratio and access time. In this research, we show experimental results of different integer encoders such as Rice, Simple9, Simple16, PForDelta codes, and DACs. Further, a method to determine an appropriate k value for building a k 2 -raster compact data structure with competitive performance is discussed.


Sign in / Sign up

Export Citation Format

Share Document