RECENT DEPOSITION ENVIRONMENTS IN THE CHUKCHI SEA AND ADJACENT AREAS OF THE ARCTIC OCEAN: EVIDENCE FROM Q-CLUSTER ANALYSIS OF SEDIMENT COMPOSITIONS AND GRAIN SIZES

2016 ◽  
Author(s):  
Christof Pearce ◽  
Aron Varhelyi ◽  
Stefan Wastegård ◽  
Francesco Muschitiello ◽  
Natalia Barrientos ◽  
...  

Ocean Science ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. 29-49
Author(s):  
Jaclyn Clement Kinney ◽  
Karen M. Assmann ◽  
Wieslaw Maslowski ◽  
Göran Björk ◽  
Martin Jakobsson ◽  
...  

Abstract. Substantial amounts of nutrients and carbon enter the Arctic Ocean from the Pacific Ocean through the Bering Strait, distributed over three main pathways. Water with low salinities and nutrient concentrations takes an eastern route along the Alaskan coast, as Alaskan Coastal Water. A central pathway exhibits intermediate salinity and nutrient concentrations, while the most nutrient-rich water enters the Bering Strait on its western side. Towards the Arctic Ocean, the flow of these water masses is subject to strong topographic steering within the Chukchi Sea with volume transport modulated by the wind field. In this contribution, we use data from several sections crossing Herald Canyon collected in 2008 and 2014 together with numerical modelling to investigate the circulation and transport in the western part of the Chukchi Sea. We find that a substantial fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. This water then contributes to the high-nutrient waters of Herald Canyon. The bottom of the canyon has the highest nutrient concentrations, likely as a result of addition from the degradation of organic matter at the sediment surface in the East Siberian Sea. The flux of nutrients (nitrate, phosphate, and silicate) and dissolved inorganic carbon in Bering Summer Water and Winter Water is computed by combining hydrographic and nutrient observations with geostrophic transport referenced to lowered acoustic Doppler current profiler (LADCP) and surface drift data. Even if there are some general similarities between the years, there are differences in both the temperature–salinity and nutrient characteristics. To assess these differences, and also to get a wider temporal and spatial view, numerical modelling results are applied. According to model results, high-frequency variability dominates the flow in Herald Canyon. This leads us to conclude that this region needs to be monitored over a longer time frame to deduce the temporal variability and potential trends.


2021 ◽  
Author(s):  
Shun Yang ◽  
Haibin Song ◽  
Kun Zhang

<p>The eddies are ubiquitous in the ocean and play an important role in the transportation and redistribution of heat, salt, carbon, nutrients and other materials in the global ocean, thus can regulate global climate and affect the distribution of marine organism. Compared with mesoscale eddies, submesoscale vortices (SVs) have smaller spatial and temporal scales, which impose higher requirements on observation and simulation. The oceanic SVs have a strong vertical velocity, which provides an important supply of nutrients in the upper ocean.</p><p>Many researchers have studied the SVs in the Arctic Ocean by physical oceanography methods (e.g., <em>in-situ </em>measurements and satellite observations). Here, we found a perfect bowl-like SV using a new method named seismic oceanography (SO). SO can use multichannel seismic (MCS) reflection data to produce surprisingly detailed images of water column. Compared with the traditional physical oceanography methods, SO has the advantages of high acquisition efficiency, high lateral resolution (~10 m) and full depth imaging of seawater.</p><p>We used MCS data to image the water column in the in autumn Northeast Chukchi Sea, and captured a perfect bowl-like structure with a depth range of ~200-620m. The structure is almost bilaterally symmetric and has dip angles of 4.8° and 5.5° on the left and on the right, respectively. And it has a horizontal scale of about 12 km at the top and 4.5 km at the bottom, and both the top and bottom of it are near horizontal. The reflections are almost blank in its interior, but are intense and very narrow (~30 m thick) at the lateral boundaries. This indicated that the interior water is homogeneous and quite different from that around it. Fortunately, there is an XBT station near the seismic line and collected almost simultaneously (only one day apart) with the seismic line. The XBT station shows obvious high temperature anomaly over 2°C at the depth of 210-700 m. Therefore, we concluded the structure is a subsurface warm SV, i.e. anticyclonic warm eddy, and may be a submesoscale coherent vortex (SCV). The anomalies from the surrounding water masses indicate that the SV was created at the edge of the Arctic Ocean and then advected here.</p><p>In addition, we used Rossby number (Ro) and Okubo-Weiss (OW) parameter calculated from daily-averaged re-analysis hydrographic data (~3.5 km of grid spacing at 75°N ) from Copernicus Marine Environment Monitoring Service (CMEMS) to analyze the SV. Result shows that the values of the Ro and OW parameter in the area of the SV are both negative. This also suggests that this SV is an anticyclone. This submesoscale anticyclonic vortex may be generated from the friction effect between the warm inflow from the North Pacific and the right wall of Barrow Canyon after passing through the Bering Strait, and then transported to the Northeast of Chukchi Sea by the Beaufort Gyre.</p>


2020 ◽  
Author(s):  
Jingkai Li

<p>The Stokes drift in the marginal ice zones (MIZ) of the Arctic Ocean is modelled by WAVEWATCH III. Applying two viscoelastic and one empirical frequency-dependent wave-ice models, the modelled wave parameters and spectrum are compared with field observations in the Beaufort-Chukchi Sea. Three wave-ice parameterizations show similar abilities to produce the surface Stokes drift estimated from buoy measurements. By using five-year (2015-2019) hindcasted directional spectra of the autumn Arctic, we present and discuss the monthly mean surface Stokes drift (1-10 cm/s), e-folding depth (1-14 m) and vertically integrated transport (0.1-0.4 m2/s) in the marginal ice zones, which are stronger in October than in September. When bulk wave parameters are adopted to estimate the Stokes drift fields, the surface Stokes drift will be underestimated by about 44-59% with mean ice concentration smaller than 60%, and the Stokes e-folding depth will be overestimated by about 1.4 to 5.0 times increasing from the interior to the edge of the ice cover. Since the Stokes drift may be an important component of the total surface current, we compare the modelled surface Stokes drift with the Eulerian current from reanalysis data, which shows that the mean surface Stokes drift is typically about 30% of the Eulerian current over large parts of the MIZ in Arctic Ocean, and is of the same order or even larger in some sea areas of the Chukchi, E. Siberian and Laptev Seas. It indicates that the Stokes drift is necessary to be considered to better model the dynamic processes of the sea ice, especially for the drift of ice floes.</p>


2019 ◽  
Vol 208 ◽  
pp. 43-55 ◽  
Author(s):  
Lúcia H. Vieira ◽  
Eric P. Achterberg ◽  
Jan Scholten ◽  
Aaron J. Beck ◽  
Volker Liebetrau ◽  
...  

2016 ◽  
Author(s):  
Christof Pearce ◽  
Aron Varhelyi ◽  
Stefan Wastegård ◽  
Francesco Muschitiello ◽  
Natalia Barrientos ◽  
...  

Abstract. The caldera-forming eruption of the Aniakchak volcano in the Aleutian Range on the Alaskan Peninsula at 3.6 cal ka BP, was one of the largest Holocene eruptions worldwide. The resulting ash is found as a visible sediment layer in several Alaskan sites and as a cryptotephra on Newfoundland and Greenland. This large geographic distribution combined with the fact that the eruption is relatively well constrained in time using radiocarbon dating of lake sediments and annual layer counts in ice cores, makes it an excellent stratigraphic marker for dating and correlating mid – late Holocene sediment and paleoclimate records. This study presents the outcome of a targeted search for the Aniakchak tephra in a marine sediment core from the Arctic Ocean, namely Core SWERUS-L2-2-PC1 (2PC), raised from 72 m water depth in Herald Canyon, western Chukchi Sea. High concentrations of tephra shards, with a geochemical signature matching that of Aniakchak ash, were observed between 550 and 711 cm core depth. Since the primary input of volcanic ash is through atmospheric transport, and assuming that bioturbation can account for mixing up to ca 10 cm of the marine sediment deposited at the coring site, the broad signal is interpreted as sustained reworking at the sediment source input. The isochron is therefore placed at the base of the sudden increase in tephra concentrations rather than at the maximum concentration. This interpretation of major reworking is strengthened by analysis of grain size distribution which points to ice rafting as an important secondary transport mechanism of volcanic ash. Combined with radiocarbon dates on mollusks in the same sediment core, the volcanic marker is used to calculate a marine radiocarbon reservoir age offset ΔR = 477 ± 60 years. This relatively high value may be explained by the major influence of typically ''carbon-old'' Pacific waters and it agrees well with recent estimates of ΔR along the northwest Alaskan coast, possibly indicating stable oceanographic conditions during the second half of the Holocene. Our use of a volcanic absolute age marker to obtain the marine reservoir age offset, is the first of its kind in the Arctic Ocean and provides an important framework for improving chronologies and correlating marine sediment archives in this region. Core 2PC has a high sediment accumulation rate averaging 200 cm/kyr throughout the last 4000 years, and the chronology presented here provides a solid base for high resolution reconstructions of late Holocene climate and ocean variability in the Chukchi Sea.


2016 ◽  
Vol 29 (22) ◽  
pp. 7957-7975 ◽  
Author(s):  
Qingxiang Liu ◽  
Alexander V. Babanin ◽  
Stefan Zieger ◽  
Ian R. Young ◽  
Changlong Guan

Abstract Twenty years (1996–2015) of satellite observations were used to study the climatology and trends of oceanic winds and waves in the Arctic Ocean in the summer season (August–September). The Atlantic-side seas, exposed to the open ocean, host more energetic waves than those on the Pacific side. Trend analysis shows a clear spatial (regional) and temporal (interannual) variability in wave height and wind speed. Waves in the Chukchi Sea, Beaufort Sea (near the northern Alaska), and Laptev Sea have been increasing at a rate of 0.1–0.3 m decade−1, found to be statistically significant at the 90% level. The trend of waves in the Greenland and Barents Seas, on the contrary, is weak and not statistically significant. In the Barents and Kara Seas, winds and waves initially increased between 1996 and 2006 and later decreased. Large-scale atmospheric circulations such as the Arctic Oscillation and Arctic dipole anomaly have a clear impact on the variation of winds and waves in the Atlantic sector. Comparison between altimeter observations and ERA-Interim shows that the reanalysis winds are on average 1.6 m s−1 lower in the Arctic Ocean, which translates to a low bias of significant wave height (−0.27 m) in the reanalysis wave data.


Sign in / Sign up

Export Citation Format

Share Document