Effect of Paddy Mass Variations on the Drying Rate and Efficiency of a Continuous Vertical Dryer

Keyword(s):  
2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bingwei Wang ◽  
Jianping Liu ◽  
Zhenghua Li ◽  
Yulong Xia ◽  
Shuangshuang Zhang ◽  
...  

Background: At present, there were numerous researches on the migration of components in tablets and granules, the investigation in the pharmaceutical literatrue concerning the effect of drying rate on the migration of water-soluble components of pellets was limited. Temperature and relative humidity (RH) were crucial parameters during the drying process which was an essential step in the preparation of pellets via wet extrusion/spheronization. To quantify these variables, the water loss percentage of pellets per minute was defined as drying rate. Objective: The study aimed to investigate the influence of drying rate on the migration of water-soluble components in wet pellets and the potential migrated mechanism. Methods: The pellets containing tartrazine as a water-soluble model drug and microcrystalline cellulose as a matrix former were prepared by extrusion/spheronization and dried at four different drying temperature and relative humidity. Afterward, the extent of migrated tartrazine was assessed regarding appearance, in-vitro dissolution test, Differential Scanning Calorimetry, X-Ray Powder Diffraction, Attenuated total reflectance Fourier transform infrared spectroscopy and Confocal Raman Mapping. Results: Results demonstrated that red spots of tartrazine appeared on the surface of pellets and more than 40% tartrazine were burst released within 5 minutes when pellets dried at 60℃/RH 10%. While pellets dried at 40℃/RH 80%, none of these aforementioned phenomena was observed. Conclusion: In conclusion, the faster drying rate was, the more tartrazine migrated to the exterior of pellets. Adjusting drying temperature and relative humidity appropriately could inhibit the migration of water-soluble components within wet extrusion/spheronization pellets.


Author(s):  
Dilip Ananda Pawar ◽  
Saroj Kumar Giri ◽  
Ajay Kumar Sharma ◽  
Nachiket Kotwaliwale

2005 ◽  
Vol 17 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Sttela Dellyzete Veiga Franco da Rosa ◽  
Delacyr da Silva Brandão Júnior ◽  
Édila Vilela de Resende Von Pinho ◽  
André Delly Veiga ◽  
Luiz Hildebrando de Castro e Silva

Desiccation tolerance in seeds depends on the species, development stage and drying conditions, especially the water removal rate. Coffea seeds are considered of intermediate performance, because they tolerate relative dehydration compared to orthodox seeds and are sensitive to low temperatures. The objective of this study was to verify the effect of different drying rates on the viability and storability of Coffea canephora seeds. A complete randomized experimental design was used, in a factorial 3 x 5 x 2 design, with three drying rates (fast, intermediate and slow), five final mean water contents after drying (51, 42, 33, 22 and 15 %) and two storage temperatures (10 and 20°C). The germination and seed vigor assessments, using radicle protrusion, cotyledon leaf opening, seedling emergence and emergence speed index, were performed shortly after drying and after two and four months storage. It was observed that with reduction in the water content there was reduction in the germination values and seed vigor, for all the drying rates. The greatest reductions in physiological quality occurred when the seeds were dried quickly and the best results were obtained at the intermediate drying rate. There was an effect of drying rate and storage temperature on the physiological quality of the seeds, and lower germination and vigor values were observed in seeds with lower water content stored at 20°C. C. canephora seeds were tolerant to desiccation down to 15 % water content and can be stored for four months at 10°C. A temperature of 20ºC can be used to store C. canephora seeds, as long as the water content is not reduced to values below 22 % water content.


2021 ◽  
Vol 1053 (1) ◽  
pp. 012103
Author(s):  
M Yusuf Syafza ◽  
Yura Amalia Diamantini ◽  
Mohamad Djaeni
Keyword(s):  

1960 ◽  
Vol 3 (2) ◽  
pp. 0071-0077 ◽  
Author(s):  
W. V. Hukill and J. L. Schmidt
Keyword(s):  

2011 ◽  
Author(s):  
Wei-Ming Yeh ◽  
Richard A. Lawson ◽  
Laren M. Tolbert ◽  
Clifford L. Henderson
Keyword(s):  

1992 ◽  
Vol 114 (3) ◽  
pp. 727-734 ◽  
Author(s):  
W. C. Lee ◽  
O. A. Plumb ◽  
L. Gong

An experimental study has been conducted to provide a data base for drying packed beds of granular, nonhygroscopic materials. Experimental results for drying rate, saturation distribution, temperature distribution, and surface saturation are reported for drying glass beads under carefully documented drying conditions. Capillary pressure for both imbibition and drainage was measured for the glass beads, whose size ranged from 65 μm to 450 μm. The drying results demonstrate that, contrary to available model predictions, porous materials do not necessarily exhibit saturation gradients that always increase with distance from the drying surface. Under certain conditions the capillary potential is sufficient to create an internal drying front. The measurements of surface saturation are the first to be reported. They are utilized to speculate on the reasons for the failure of drying models to compare well with experiment without adjusting the convective heat or mass transfer coefficients.


2006 ◽  
Vol 39 (8) ◽  
pp. 814-817 ◽  
Author(s):  
Masato Yamamura ◽  
Takayuki Inoue ◽  
Yoshihide Mawatari ◽  
Hiroyuki Kage

Sign in / Sign up

Export Citation Format

Share Document