scholarly journals Mechanical Properties of Impregnated and Heat Treated Oriental Beech Wood

BioResources ◽  
2016 ◽  
Vol 11 (4) ◽  
Author(s):  
Turkay Turkoglu ◽  
Ergun Baysal ◽  
Mehmet Yuksel ◽  
Huseyin Peker ◽  
Cevdet Sacli ◽  
...  
Holzforschung ◽  
2015 ◽  
Vol 69 (5) ◽  
pp. 587-593 ◽  
Author(s):  
Ehsan Bari ◽  
Hamid Reza Taghiyari ◽  
Behbood Mohebby ◽  
Carol A. Clausen ◽  
Olaf Schmidt ◽  
...  

Abstract The effects of exposing specimens of Oriental beech [Fagus sylvatica subsp. orientalis (Lipsky) Greuter and Burdet] to the white-rot fungi Pleurotus ostreatus (Jacq.: Fr.) Kummer and Trametes versicolor (L.: Fr.) Pilát strain 325 have been studied concerning the mechanical properties and chemical composition in terms of carbohydrates, cellulose, and lignin. Biological decay tests were carried out in accordance with the EN 113 standard specifications for 30 and 120 days. P. ostreatus had nearly the same deteriorating effects on the mechanical properties and chemical composition as that caused by T. versicolor. High and significant correlations were found between some mechanical properties with chemical components; for instance, the correlation coefficient (R2) between impact bending and carbohydrate content was about 0.96. The changes of components influence the various mechanical properties to a different degree. Incipient fungal decay caused severe changes for impact bending and carbohydrate loss. Several other properties declined at 120-day exposure time, such as the hardness, compression strength parallel to grain, and cellulose and lignin losses.


2013 ◽  
Vol 98 (9) ◽  
pp. 1762-1765 ◽  
Author(s):  
Kévin Candelier ◽  
Stéphane Dumarçay ◽  
Anélie Pétrissans ◽  
Philippe Gérardin ◽  
Mathieu Pétrissans

Author(s):  
Michael M. Kersker ◽  
E. A. Aigeltinger ◽  
J. J. IIren

Ni-rich alloys based on approximate ternary composition Ni-8Mo-15A1 (at%) are presently under investigation in an attempt to study the contribution, if any, of the profusion of Mo-rich NixMo metastable compounds that these alloys contain to their excellent mechanical properties. One of the alloys containing metastable NixMo precipitates is RSR 197 of composition Ni-8.96Mo-15.06A1-1.98Ta-.015Yt. The alloy was prepared at Pratt and Whitney Government Products Division, West Palm Beach, Florida, from rapidly solidified powder. The powder was canned under inert conditions and extruded as rod at 1315°C. The as-extruded rod, after air cooling, was solution treated at 1315°C for two hours, air cooled, and heat treated for one hour at 815°C, followed again by air cooling.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4366
Author(s):  
Saqib Anwar ◽  
Ateekh Ur Rehman ◽  
Yusuf Usmani ◽  
Ali M. Al-Samhan

This study evaluated the microstructure, grain size, and mechanical properties of the alloy 800H rotary friction welds in as-welded and post-weld heat-treated conditions. The standards for the alloy 800H not only specify the composition and mechanical properties but also the minimum grain sizes. This is because these alloys are mostly used in creep resisting applications. The dynamic recrystallization of the highly strained and plasticized material during friction welding resulted in the fine grain structure (20 ± 2 µm) in the weld zone. However, a small increase in grain size was observed in the heat-affected zone of the weldment with a slight decrease in hardness compared to the base metal. Post-weld solution heat treatment (PWHT) of the friction weld joints increased the grain size (42 ± 4 µm) in the weld zone. Both as-welded and post-weld solution heat-treated friction weld joints failed in the heat-affected zone during the room temperature tensile testing and showed a lower yield strength and ultimate tensile strength than the base metal. A fracture analysis of the failed tensile samples revealed ductile fracture features. However, in high-temperature tensile testing, post-weld solution heat-treated joints exhibited superior elongation and strength compared to the as-welded joints due to the increase in the grain size of the weld metal. It was demonstrated in this study that the minimum grain size requirement of the alloy 800H friction weld joints could be successfully met by PWHT with improved strength and elongation, especially at high temperatures.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 968
Author(s):  
Dong Xing ◽  
Xinzhou Wang ◽  
Siqun Wang

In this paper, Berkovich depth-sensing indentation has been used to study the effects of the temperature-dependent quasi-static mechanical properties and creep deformation of heat-treated wood at temperatures from 20 °C to 180 °C. The characteristics of the load–depth curve, creep strain rate, creep compliance, and creep stress exponent of heat-treated wood are evaluated. The results showed that high temperature heat treatment improved the hardness of wood cell walls and reduced the creep rate of wood cell walls. This is mainly due to the improvement of the crystallinity of the cellulose, and the recondensation and crosslinking reaction of the lignocellulose structure. The Burgers model is well fitted to study the creep behavior of heat-treated wood cell walls under different temperatures.


2015 ◽  
Vol 46 (7) ◽  
pp. 3276-3286 ◽  
Author(s):  
S. K. Chaudhury ◽  
D. Apelian ◽  
P. Meyer ◽  
D. Massinon ◽  
J. Morichon

Sign in / Sign up

Export Citation Format

Share Document