scholarly journals Comparative study on laccase activity of white rot fungi under submerged fermentation with different lignocellulosic wastes

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9166-9179
Author(s):  
Qi An ◽  
Jie Qiao ◽  
Lu-Sen Bian ◽  
Mei-Ling Han ◽  
Xun-You Yan ◽  
...  

Different Pleurotus ostreatus and Flammulina velutipes species were compared relative to their ability to produce laccase in submerged fermentation of various lignocellulosic wastes. Fungi cultivation in identical culture conditions revealed wide differences among both species and strains of the same species. The laccase secretion ability of P. ostreatus strains was superior to F. velutipes strains. Maximum laccase production on cottonseed hull, corncob, and poplar wood was secreted by P. ostreatus CY 568, P. ostreatus CCEF 89, and P. ostreatus CY 568, respectively. The nature of lignocellulosic materials played an important role in determining the expression of laccase potential of fungi. The presence of cottonseed hull improved laccase activity and accelerated the rate of enzyme production. Maximum laccase production on cottonseed hull was nearly 1.29-fold and 1.53-fold higher than that on corncob and poplar wood, respectively. Laccase activity was detected in almost all tested strains on cottonseed hull on the first day, while only a few strains on poplar wood and corncob were detected on the first day. These findings will be helpful for selecting the appropriate strain in industrial applications and for optimization of integrated industrial laccase production.

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5287-5300
Author(s):  
Qi An ◽  
Cong-Sheng Li ◽  
Jing Yang ◽  
Si-Yu Chen ◽  
Kai-Yue Ma ◽  
...  

Pleurotus ostreatus and a newly isolated Ganoderma lingzhi strain were evaluated for their laccase secretion capacity by solid-state fermentation with different agricultural and forestry residues. There was a significant difference among fungi for biosynthetic potential. In principle, the laccase secretion capacity of P. ostreatus CY 568 was stronger than that from G. lingzhi Han 500. Different species of fungi had a preference for agricultural and forestry residues. The presence of cottonseed hull and Populus beijingensis were helpful for accelerating the rate of laccase enzyme production of P. ostreatus CY 568. Cottonseed hull and corncob were useful for improving the production of laccase from G. lingzhi Han 500. Continuous and stable laccase production was found on cottonseed hull by P. ostreatus CY 568 and G. lingzhi Han 500. Maximum laccase activity obtained from P. ostreatus CY 568 on Toona sinensis, Sophora japonica, Salix babylonica, Populus beijingensis, corncob, cottonseed hull, and straw of Oryza sativa was higher than that from G. lingzhi Han 500, and was nearly 1.16-fold, 1.59-fold, 3.32-fold, 1.39-fold, 1.08-fold, 1.08-fold, and 1.36-fold, respectively. These findings will be helpful for developing new productive strains and expanding more species for industrial application to obtain efficient and low-cost laccase.


2018 ◽  
Vol 43 (6) ◽  
pp. 613-622 ◽  
Author(s):  
Muhammad Irfan ◽  
Sajid Mehmood ◽  
Muhammad Irshad ◽  
Zahid Anwar

Abstract Objective Industrial effluents and agriculture biomass are main environmental hazards which are facing by developing country like Pakistan. Along with various other industrial applications, laccases are also involved in the oxidation of various industrial hazardous compounds to detoxify them. This study was designed to produce and purify laccase from ascomyceteous fungi, i.e. Alternaria alternata through solid stat fermentation. Materials and methods Abundantly available Sarkanda grass “Saccharum spontaneum” was used as agro-waste substrate for laccase production from fungus A. alternata. Previously only white rot fungi are familiar for laccase production and almost no work has been done on laccase production by A. alternata. In this research work, different physical and chemical parameters were optimized for maximum laccase production through solid state fermentation (SSF). Results Enzyme was purified and its molecular weight was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Maximum laccase activity (21.87±0.0115 unit/mL) was detected on 7th day of incubation having pH 5 of the medium at 35°C. None of the added metal ions increased laccase production. Galactose and “yeast extract” used as optimum carbon and nitrogen source for highest laccase production. Conclusion A monomeric protein (laccase) having approximately 51 kDa molecular weight obtained after SDS-PAGE.


Lignin-degrading and modifying enzymes are produced under specific culture conditions by white-rot fungi. Most of these enzymes are excreted into the extracellular environment and can be purified from culture supernatant. At RepliGen we have characterized many of the extracellular proteins from the white-rot fungus Phanerochaete chrysosporium . Industrial application potentials for these enzymes are predicted to be in the chemical industry, pulp and paper industry, and perhaps in pollution control. The isolation and characterization of enzymes that catalyse specific reactions on kraft lignins and lignosulphonates will be discussed. These reactions include (1) a polymerizing—depolymerizing activity that changes the size of the lignin substrate and (2) a decolorizing reaction that reduces chromophoric groups in lignin. Kraft lignin and lignosulphonates have many diverse commercial applications because of their dual properties of hydrophobicity and hydrophilicity. They could have broad use if modified, as in the above reactions, in an efficient manner. The development of enzyme systems may provide just such efficient reactions.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6706-6722
Author(s):  
Qi An ◽  
Wen-Yi Shi ◽  
Yi-Xuan He ◽  
Wen-Yao Hao ◽  
Kai-Yue Ma ◽  
...  

The capacity of novel isolated white-rot fungi secreting laccase was evaluated for various kinds of lignocellulosic biomass in submerged fermentation. The laccase secreted by Neofomitella fumosipora Han 386 and Pleurotus pulmonarius Han 527 was significantly faster than that by Coriolopsis trogii Han 751 and Coriolopsis sanguinaria An 282. Maximum laccase from N. fumosipora Han 386 on the four kinds of lignocellulosic biomass tested appeared on the first day. This phenomenon indicated that N. fumosipora Han 386 secreted laccase rapidly compared with other tested strains in this study and showed the superiority in the rate of secreting laccase. Based on the maximum laccase activity, the ability of secreting laccase of C. sanguinaria An 282 was superior to other tested novel isolated strains. On the whole, N. fumosipora Han 386 and P. pulmonarius Han 527 preferred Toona sinensis to produce laccase, C. trogii Han 751 preferred to produce laccase on Populus beijingensis, and C. sanguinaria An 282 grown on Sorghum straw was more suitable for secreting laccase. The results will be helpful for developing bioprocesses using various kinds of lignocellulosic biomass for lignocellulolytic enzyme production and enlarging the number of laccase producing strains for industrial application.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 648
Author(s):  
Luong N. Nguyen ◽  
Minh T. Vu ◽  
Md Abu Hasan Johir ◽  
Nirenkumar Pathak ◽  
Jakub Zdarta ◽  
...  

Laccase enzyme from white-rot fungi is a potential biocatalyst for the oxidation of emerging contaminants (ECs), such as pesticides, pharmaceuticals and steroid hormones. This study aims to develop a three-step platform to treat ECs: (i) enzyme production, (ii) enzyme concentration and (iii) enzyme application. In the first step, solid culture and liquid culture were compared. The solid culture produced significantly more laccase than the liquid culture (447 vs. 74 µM/min after eight days), demonstrating that white rot fungi thrived on a solid medium. In the second step, the enzyme was concentrated 6.6 times using an ultrafiltration (UF) process, resulting in laccase activity of 2980 µM/min. No enzymatic loss due to filtration and membrane adsorption was observed, suggesting the feasibility of the UF membrane for enzyme concentration. In the third step, concentrated crude enzyme was applied in an enzymatic membrane reactor (EMR) to remove a diverse set of ECs (31 compounds in six groups). The EMR effectively removed of steroid hormones, phytoestrogen, ultraviolet (UV) filters and industrial chemical (above 90%). However, it had low removal of pesticides and pharmaceuticals.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
K. Y. Usha ◽  
K. Praveen ◽  
B. Rajasekhar Reddy

The white rot fungi Stereum ostrea displayed a wide diversity in their response to supplemented inducers, surfactants, and copper sulphate in solid state fermentation. Among the inducers tested, 0.02% veratryl alcohol increased the ligninolytic enzyme production to a significant extent. The addition of copper sulphate at 300 μM concentration has a positive effect on laccase production increasing its activity by 2 times compared to control. Among the surfactants, Tween 20, Tween 80, and Triton X 100, tested in the studies, Tween 80 stimulated the production of ligninolytic enzymes. Biosorption of dyes was carried out by using two lignocellulosic wastes, rice bran and wheat bran, in 50 ppm of remazol brilliant blue and remazol brilliant violet 5R dyes. These dye adsorbed lignocelluloses were then utilized for the production of ligninolytic enzymes in solid state mode. The two dye adsorbed lignocelluloses enhanced the production of laccase and manganese peroxidase but not lignin peroxidase.


Sign in / Sign up

Export Citation Format

Share Document