scholarly journals Influence of Culture Conditions on Laccase Production, Growth, and Isoenzymes Patterns in Native White Rot Fungi from the Misiones Rainforest (Argentina)

BioResources ◽  
2013 ◽  
Vol 8 (2) ◽  
Author(s):  
María I. Fonseca ◽  
Julia I. Fariña ◽  
Noelia Irma Sanabria ◽  
Laura L. Villalba ◽  
Pedro D. Zapata
BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9166-9179
Author(s):  
Qi An ◽  
Jie Qiao ◽  
Lu-Sen Bian ◽  
Mei-Ling Han ◽  
Xun-You Yan ◽  
...  

Different Pleurotus ostreatus and Flammulina velutipes species were compared relative to their ability to produce laccase in submerged fermentation of various lignocellulosic wastes. Fungi cultivation in identical culture conditions revealed wide differences among both species and strains of the same species. The laccase secretion ability of P. ostreatus strains was superior to F. velutipes strains. Maximum laccase production on cottonseed hull, corncob, and poplar wood was secreted by P. ostreatus CY 568, P. ostreatus CCEF 89, and P. ostreatus CY 568, respectively. The nature of lignocellulosic materials played an important role in determining the expression of laccase potential of fungi. The presence of cottonseed hull improved laccase activity and accelerated the rate of enzyme production. Maximum laccase production on cottonseed hull was nearly 1.29-fold and 1.53-fold higher than that on corncob and poplar wood, respectively. Laccase activity was detected in almost all tested strains on cottonseed hull on the first day, while only a few strains on poplar wood and corncob were detected on the first day. These findings will be helpful for selecting the appropriate strain in industrial applications and for optimization of integrated industrial laccase production.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 648
Author(s):  
Luong N. Nguyen ◽  
Minh T. Vu ◽  
Md Abu Hasan Johir ◽  
Nirenkumar Pathak ◽  
Jakub Zdarta ◽  
...  

Laccase enzyme from white-rot fungi is a potential biocatalyst for the oxidation of emerging contaminants (ECs), such as pesticides, pharmaceuticals and steroid hormones. This study aims to develop a three-step platform to treat ECs: (i) enzyme production, (ii) enzyme concentration and (iii) enzyme application. In the first step, solid culture and liquid culture were compared. The solid culture produced significantly more laccase than the liquid culture (447 vs. 74 µM/min after eight days), demonstrating that white rot fungi thrived on a solid medium. In the second step, the enzyme was concentrated 6.6 times using an ultrafiltration (UF) process, resulting in laccase activity of 2980 µM/min. No enzymatic loss due to filtration and membrane adsorption was observed, suggesting the feasibility of the UF membrane for enzyme concentration. In the third step, concentrated crude enzyme was applied in an enzymatic membrane reactor (EMR) to remove a diverse set of ECs (31 compounds in six groups). The EMR effectively removed of steroid hormones, phytoestrogen, ultraviolet (UV) filters and industrial chemical (above 90%). However, it had low removal of pesticides and pharmaceuticals.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
K. Y. Usha ◽  
K. Praveen ◽  
B. Rajasekhar Reddy

The white rot fungi Stereum ostrea displayed a wide diversity in their response to supplemented inducers, surfactants, and copper sulphate in solid state fermentation. Among the inducers tested, 0.02% veratryl alcohol increased the ligninolytic enzyme production to a significant extent. The addition of copper sulphate at 300 μM concentration has a positive effect on laccase production increasing its activity by 2 times compared to control. Among the surfactants, Tween 20, Tween 80, and Triton X 100, tested in the studies, Tween 80 stimulated the production of ligninolytic enzymes. Biosorption of dyes was carried out by using two lignocellulosic wastes, rice bran and wheat bran, in 50 ppm of remazol brilliant blue and remazol brilliant violet 5R dyes. These dye adsorbed lignocelluloses were then utilized for the production of ligninolytic enzymes in solid state mode. The two dye adsorbed lignocelluloses enhanced the production of laccase and manganese peroxidase but not lignin peroxidase.


2021 ◽  
Vol 9 (12) ◽  
pp. 2595
Author(s):  
Yu Zhang ◽  
Zhongqi Dong ◽  
Yuan Luo ◽  
En Yang ◽  
Huini Xu ◽  
...  

Manganese peroxidases (MnPs), gene family members of white-rot fungi, are necessary extracellular enzymes that degrade lignocellulose and xenobiotic aromatic pollutants. However, very little is known about the diversity and expression patterns of the MnP gene family in white-rot fungi, especially in contrast to laccases. Here, the gene and protein sequences of eight unique MnP genes of T. trogii S0301 were characterized. Based on the characteristics of gene sequence, all TtMnPs here belong to short-type hybrid MnP (type I) with an average protein length of 363 amino acids, 5–6 introns, and the presence of conserved cysteine residues. Furthermore, analysis of MnP activity showed that metal ions (Mn2+ and Cu2+) and static liquid culture significantly influenced MnP activity. A maximum MnP activity (>14.0 U/mL) toward 2,6-DMP was observed in static liquid culture after the addition of Mn2+ (1 mM) or Cu2+ (0.2 or 2 mM). Moreover, qPCR analysis showed that Mn2+ obviously upregulated the Group I MnP subfamily (T_trogii_09901, 09904, 09903, and 09906), while Cu2+ and H2O2, along with changing temperatures, mainly induced the Group II MnP subfamily (T_trogii_11984, 11971, 11985, and 11983), suggesting diverse functions of fungal MnPs in growth and development, stress response, etc. Our studies here systematically analyzed the gene structure, expression, and regulation of the TtMnP gene family in T. trogii, one of the important lignocellulose-degrading fungi, and these results extended our understanding of the diversity of the MnP gene family and helped to improve MnP production and appilications of Trametes strains and other white-rot fungi.


2007 ◽  
Vol 56 (2) ◽  
pp. 179-186 ◽  
Author(s):  
P.J. Strong ◽  
J.E. Burgess

The aim of this work was to ascertain whether a submerged culture of a white rot fungus could be used to treat distillery wastewater, and whether the compounds present in the wastewater would stimulate laccase production. Trametes pubescens MB 89, Ceriporiopsissubvermispora, Pycnoporus cinnabarinus and UD4 were screened for their ability for the bioremediation of a raw, untreated distillery wastewater as well as distillery wastewater that had been pretreated by polyvinylpolypyrrolidone. Suitability of each strain was measured as a function of decreasing the chemical oxygen demand (COD) and total phenolic compounds concentration and the colour of the wastewater, while simultaneously producing laccase in high titres. After screening, T. pubescens MB 89 was used further in flask cultures and attained 79±1.1% COD removal, 80±4.6% total phenols removal, 71±1.6% decrease in colour at an absorbance of 500 nm and increased the pH from 5.3 to near-neutral. Laccase activity in flask cultures peaked at 4,644±228 units/l, while the activity in a 50 l bubble lift reactor peaked at 12,966±71 units/l. Trametes pubescens MB 89 greatly improved the quality of a wastewater known for toxicity towards biological treatment systems, while simultaneously producing an industrially relevant enzyme.


2010 ◽  
Vol 46 (6) ◽  
pp. 534-539 ◽  
Author(s):  
María I. Fonseca ◽  
Ernesto Shimizu ◽  
Pedro D. Zapata ◽  
Laura L. Villalba

Sign in / Sign up

Export Citation Format

Share Document