scholarly journals Ultrasound-assisted extraction of bayberry tannin and optimization using response surface methodology

BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1825-1841
Author(s):  
Mengqi Dong ◽  
Yufan Hu ◽  
Huijun Zhang ◽  
Xinyuan Lan ◽  
Xiaolu Ran ◽  
...  

The extraction of bayberry tannins has potential to maximize the utilization of a forest waste. This study employed a four-level central composite design through response surface methodology to optimize the extraction of tannin from bayberry barks through ultrasound-assisted extraction (UAE). The effects of solute to solvent ratio (STSR), solvent concentration (SC), extraction time (ET), and sonication temperature (ST) on the total extraction yield of total condensed tannin (TCT yield) and total phenolic content (TPC) were investigated. The extracts were characterized with matrix-assisted laser desorption-time of flight mass spectrometer (MALDI-TOF MS), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC). The optimized condition was reached when the STSR and ST were set at 1:57.16 g/mL and 71.3%, when the ET and the ST was 39.1 min and 48.75 °C. In these conditions, the TCT yield and TPC reached their maximum values of 17.55% and 365.01 mg GAE/g, respectively. Furthermore, the polyflavonoids of bayberry tannin ranged from dimers to heptamers, which were only composed of proanthocyanidins (PC) containing galloy groups.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3616
Author(s):  
Valentina Melini ◽  
Francesca Melini

Phenolic compounds are currently the most investigated class of functional components in quinoa. However, great variability in their content emerged, because of differences in sample intrinsic and extrinsic characteristics; processing-induced factors; as well as extraction procedures applied. This study aimed to optimize phenolic compound extraction conditions in black quinoa seeds by Response Surface Methodology. An ultrasound-assisted extraction was performed with two different mixtures; and the effect of time; temperature; and sample-to-solvent ratio on total phenolic content (TPC) was investigated. Data were fitted to a second-order polynomial model. Multiple regression analysis and analysis of variance were used to determine the fitness of the model and optimal conditions for TPC. Three-dimensional surface plots were generated from the mathematical models. TPC at optimal conditions was 280.25 ± 3.94 mg of Gallic Acid Equivalent (GAE) 100 g−1 dm upon extraction with aqueous methanol/acetone, and 236.37 ± 5.26 mg GAE 100 g−1 dm with aqueous ethanol mixture. The phenolic profile of extracts obtained at optimal conditions was also investigated by HPLC. The two extracting procedures did not show different specificities for phenolic compounds but differed in the extraction yield.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3949
Author(s):  
Katarina Šavikin ◽  
Jelena Živković ◽  
Teodora Janković ◽  
Nada Ćujić-Nikolić ◽  
Gordana Zdunić ◽  
...  

In this study we define the optimal conditions for ultrasound-assisted extraction of bioactive polyphenols from S. raeseri aerial parts using response surface methodology. The influence of ethanol concentration (10–90%), extraction temperature (20–80 °C), extraction time (10–60 min), and solid-to-solvent ratio (1:10–1:50) on total phenolic content as well as on content of individual flavonoids, and hypolaetin and isoscutellarein derivatives was studied. For the experimental design, a central composite design was chosen. In the obtained extracts, the following ranges of targeted compounds were detected: total phenol from 19.32 to 47.23 mg GAE/g dw, HYP from 1.05 to 11.46 mg/g dw, ISC 1 from 0.68 to 10.68 mg/g dw, and ISC 2 from 0.74 to 15.56 mg/g dw. The optimal extraction conditions were set as: ethanol concentration of 65%, extraction time of 50 min, extraction temperature of 63 °C, and solid-to-solvent ratio of 1:40. Contents of TP, HYP, ISC 1, and ISC 2 in optimal extracts were 47.11 mg GAE/g dw, 11.73 mg/g dw, 9.54 mg/g dw, and 15.40 mg/g dw, respectively. Experimentally set values were in good agreement with those predicted by the response surface methodology model, indicating suitability of the used model, as well as the success of response surface methodology in optimizing the conditions of the extraction.


2020 ◽  
Vol 5 (9) ◽  
pp. 1004-1012
Author(s):  
Junior Franck Ekorong Akouan Anta ◽  
Biloa Dorothée Marcelle ◽  
Bruno Fabrice Siewe ◽  
Raghavarao K. S. M. S.

Mango seed kernels are by-products of the consumption and transformation of mango fruits (Mangifera indica L.). Many ways of valorisation have been proposed, and among them, their phenolic compounds extraction. To increase the extraction yield, ultrasound-assisted extraction was modelled and optimized. The 4 factors Central Composite design associated with the Response Surface Methodology (RSM) were used to achieve that goal. The effect of extraction time, temperature, stirring rate and the Ultrasound Amplitude, on the total phenolic compound extraction yield and the total reducing power of the extract, were studied and modelled. The modelling allows us to do a multi-response optimization to identify the best-operating conditions to achieve at the same time the highest extraction yield and antioxidant capacity. The optimal operating conditions achieved were 41.82 min of extraction time, 54.75⁰C as extraction time, under 266.67 rpm as stirring rate, and 100% ultrasound amplitude. With an expected extraction yield of 71.35 mg GA/g, and 123.058 mg AA/g of total reducing power. 2 extraction cycles, under these conditions, are enough to extract a maximum of the phenolic content, under the described conditions.


Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1612
Author(s):  
Tahani Maher ◽  
Nassereldeen A. Kabbashi ◽  
Mohamed E. S. Mirghani ◽  
Md Z. Alam ◽  
Djabir Daddiouaissa ◽  
...  

Acacia Seyal gum (ASG), also known as gum Arabic, is an antioxidant-rich soluble fiber. ASG has been reported to have many biological activities, including anticancer, antidiabetic, antiulcer, and immunomodulatory activity. Extraction of bioactive compounds from ASG is commonly performed using conventional extraction methods. However, these techniques have certain limitation in terms of extraction time, energy, and solvent requirements. Ultrasound-assisted extraction (UAE) could be used as an alternative technique to extract bioactive compounds in less time, at low temperature, and with less energy and solvent requirements. In this study, the UAE extraction of ASG was optimized using response surface methodology (RSM). A face-centered central composite design (FCCCD) was used to monitor the effect of different independent factors of ultrasound operation (sonication time, temperature, and solvent ratio) on ASG extraction yield. In addition, screening and characterization of phytochemicals in 60% ethanol ASG extract was carried out using Raman microscopy, Fourier transform infrared spectroscopy (FTIR), and gas chromatography time-of-flight mass spectroscopy (GC-TOFMS) analysis. The results indicated that, under optimal conditions (extraction time 45 min, extraction temperature 40 °C, and solid–liquid ratio of 1:25 g/mL), the yield of ASG was 75.87% ± 0.10. This yield was reasonably close to the predicted yield of 75.39% suggested by the design of experiment. The ANOVA revealed that the model was highly significant due to the low probability value (p < 0.0001). Raman spectrum fingerprint detected polysaccharides, such as galactose and glucose, and protein like lysine and proline, while FTIR spectrum revealed the presence of functional groups peaks value of alkanes, aldehydes, aliphatic amines, and phenol. GC-TOFMS spectroscopic detected the presence of strong d-galactopyranose, carotenoid, and lycopene antioxidant compounds. In conclusion, this study demonstrated that the UAE technique is an efficient method to achieve a high yield of ASG extracts. The selected model is adequate to optimize the extraction of several chemical compounds reported in this study.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Soumaya Hasni ◽  
Ghayth Rigane ◽  
Hanene Ghazghazi ◽  
Hajer Riguene ◽  
Amir Bouallegue ◽  
...  

Eucalyptus marginata L. has a significant value in traditional medicine and recently has been shown to possess many pharmacological properties in vitro. The main goal of the present study was to optimize the extraction parameters of phenolic compounds from Eucalyptus marginata L. leaves using the extraction technique assisted by ultrasound in comparison with maceration using response surface methodology as a predicted tool. Therefore, total phenolic and flavonoid contents have been optimized, taking into account four variables: extraction time, temperature, liquid-to-solid ratio, and ethanol concentration. The optimum ultrasound-assisted extraction method for total phenolic and total flavonoid contents was obtained by ensuring the following parameters: t = 49.9 min, T = 74.9°C, liquid-to-solid ratio = 39.5 ml/g, and ethanol = 58.48%. The optimum extract has been subjected to LC-ESI-MS analysis. This technique allowed us to identify ten phenolic compounds: four phenolic acids mainly gallic acid (27.77 ± 0.06 µg/g DW) and protocatechuic acid (37.66 ± 0.04 µg/g DW) and six flavonoid compounds such as quercetrin (150.78 ± 0.02 µg/g DW) and hyperoside (39.19 ± 0.03 µg/g DW). These green and efficient procedures should be a promising option to guide industrial design for the production of phenolic-rich plant extracts.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim Bulduk ◽  
Bahdışen Gezer ◽  
Mustafa Cengiz

In this study, amount of morphine from poppy capsules(Papaver somniferum)was investigated using ultrasonic assisted extraction (UAE). Response surface methodology was used to estimate effective experimental conditions on the content extraction of poppy capsules. For this purpose, solvent/solid ratio (10–20 mL/500 mg sample), pH (1–13), time (30–60 min), and temperature (30–50°C) were chosen as experimental variables. The affected response is extraction recovery values for morphine from poppy straw. For interpreting the relationship between experimental factors and response, a design table was established with combinations of three different concentrations levels of this compound in 29 trials. The second order quadratic model gave a satisfactory description of the experimental data. In our study,R-Squared (0.96), Adj-R-Squared (0.92), and PredR-Squared (0.78) values for extraction yield display good accuracy of the derived model. The predicted optimal conditions for the highest morphine level (3.38 mg morphine/500 mg-sample) were found at 19.99 mL solvent/500 mg solid ratio, 59.94 min extraction time, 1.10 pH, and 42.36°C temperature. In the optimal extraction conditions, the experimental values are very close to the predicted values. Consequently, the response surface modeling can be achieved sufficiently to predict extraction yield from poppy straw by ultrasound assisted extraction.


Sign in / Sign up

Export Citation Format

Share Document