scholarly journals Isolation and identification of the antibacterial compounds in Coptis chinensis for the preservation of wood

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2346-2368
Author(s):  
Lei Wang ◽  
Binhui Li ◽  
Xiaoqi Zhao ◽  
Shiming Ren ◽  
Yamei Wang

Wood is a biomass material that is easily eroded by wood-rotting fungi. Coptis chinensis is a natural green plant, which has an inhibitory effect on most microorganisms. Based on the highly toxic effects of the currently used wood chemical preservatives on humans, animals, and the environment, Coptis chinensis was selected to perform decay resistance experiments of wood in this paper. The active ingredients with bacteriostatic properties in Coptis chinensis were separated and screened via chemical treatment, and their structure was identified via nuclear magnetic resonance spectroscopy. The primary bacteriostatic components in Coptis chinensis were berberine hydrochloride, palmatine, and jatrorrhizine. The bacteriostatic zone experiment with a single component and different compounds for white-rot and brown-rot fungus were tested by the disc agar diffusion method. The bacteriostatic effect of berberine hydrochloride in a single active fraction was better. The three-fraction compound had the best bacteriostatic effect and was equivalent to alkaline copper quaternary. The natural active bacteriostatic fractions in Coptis chinensis had noticeable inhibitory effects on white-rot fungus (Trametes versicolor (L.) Lloyd) and brown-rot fungus (Gloeophyllum trabeum (Pers.) Murrill). The minimum bacteriostatic concentration was 0.01 g/mL. The results showed that Coptis extracts had potential as a wood protectant.

2021 ◽  
Vol 71 (1) ◽  
pp. 46-57
Author(s):  
Ying Gao ◽  
Shiyi Mei ◽  
Xingxia Ma ◽  
Xinmiao Meng

Abstract For this study, spruce–pine–fir (Picea–Pinus–Abies [SPF]) specification material, oriented strand board (OSB), and domestic twisted nails that were driven vertically and perpendicular-to-grain were selected. Referring to GB/T 13942.1-2009, nailed joints specimens were exposed both to white rot fungus and brown rot fungus for 1 month to 6 months. The monotonous loading test was applied to the specimens based on ASTM D1761-88. The holding power of the nails and weight loss of both OSB and SPF were investigated. Theoretical maximum load of the nailed joints was calculated according to Eurocode5. Results illustrated that the load, stiffness, and energy consumption of the nailed joints showed significant linear decline with the decay time. A linear decline of the ductility coefficient was not obvious, and there was no obvious difference between white rot fungus and brown rot fungus. Effect of decay on the OSB was much greater than the impact on the SPF. The decay grade of the nailed joints was established according to the linear relationship between weight loss and maximum load. Based on Eurocode5, the study calculated the maximum load of the nailed joints and introduced the correction coefficient γ to better predict the maximum load.


Holzforschung ◽  
2004 ◽  
Vol 58 (3) ◽  
pp. 311-315 ◽  
Author(s):  
H.-L. Lee ◽  
G.C. Chen ◽  
R.M. Rowell

Abstract Resistance of wood reacted in situ with phosphorus pentoxide-amine to the brown-rot fungus Gloeophyllum trabeum and white-rot fungus Trametes versicolor was examined. Wood reacted with either octyl, tribromo, or nitro derivatives were more resistant to both fungi. Threshold retention values of phosphoramide-reacted wood to white-rot fungus T. versicolor ranged from 2.9 to 13.3 mmol, while these for brown-rot fungus G. trabeum ranged from 8.1 to 19.2 mmol. Wood reacted with phosphoramide tested to be more resistant to white-rot than brown-rot attack.


Holzforschung ◽  
2006 ◽  
Vol 60 (4) ◽  
pp. 455-458 ◽  
Author(s):  
S. Nami Kartal

Abstract The decay and termite resistance of boric acid (BA)- and di-sodium octoborate tetrahydrate (DOT)-treated sugi sapwood was tested in the context of additional heat treatments at two temperature levels. Heat treatments had no effect on boron release and almost all boron was leached from specimens during a 10-day weathering period. Decay tests with the brown-rot fungus Fomitopsis palustris and the white-rot fungus Trametes versicolor and a 3-week termite resistance test with the subterranean termite Coptotermes formosanus were performed. Heat treatments did not increase the decay resistance of either BA- or DOT-treated specimens against the brown-rot fungus. However, the decay resistance of BA-treated specimens against the same fungus increased after heat treatment at 220°C for 2 h. Heat treatments at 180°C for 4 h and 220°C for 2 h also resulted in increased decay resistance of DOT-treated specimens against T. versi-color. Increased resistance against termite attack was observed only in DOT-treated specimens heated at 180°C for 4 h or at 220°C for 2 h. Accordingly, a synergistic effect between heat and DOT treatments was observed for resistance against white-rot decay and termites.


Holzforschung ◽  
2011 ◽  
Vol 65 (6) ◽  
pp. 883-888 ◽  
Author(s):  
Olaf Schmidt ◽  
Dong Sheng Wei ◽  
Walter Liese ◽  
Elisabeth Wollenberg

Abstract The degradation of several Asian bamboo species by white-, brown-, and soft-rot fungi was investigated under laboratory conditions by means of different test methods. Severe deterioration was caused by all three fungi types. The bamboo species differed in durability. Samples from 6 months young culms decayed more than older ones. There were no significant differences between 1- and 3-year-old culms. Samples taken from the culm top were more vulnerable to decay than those from the bottom. Wet bamboo samples with soil contact were especially degraded by the white-rot fungus Schizophyllum commune, whereas the brown-rot fungus Coniophora puteana produced the greatest mass loss in drier samples. The sealing of bamboo crosscut ends reduced the rate of decay.


2020 ◽  
Vol 8 (1) ◽  
pp. 73 ◽  
Author(s):  
Eliana Veloz Villavicencio ◽  
Tuulia Mali ◽  
Hans K. Mattila ◽  
Taina Lundell

Four well-studied saprotrophic Basidiomycota Agaricomycetes species with different decay strategies were cultivated on solid lignocellulose substrates to compare their extracellular decomposing carbohydrate-active and lignin-attacking enzyme production profiles. Two Polyporales species, the white rot fungus Phlebia radiata and brown rot fungus Fomitopsis pinicola, as well as one Agaricales species, the intermediate “grey” rot fungus Schizophyllum commune, were cultivated on birch wood pieces for 12 weeks, whereas the second Agaricales species, the litter-decomposing fungus Coprinopsis cinerea was cultivated on barley straw for 6 weeks under laboratory conditions. During 3 months of growth on birch wood, only the white rot fungus P. radiata produced high laccase and MnP activities. The brown rot fungus F. pinicola demonstrated notable production of xylanase activity up to 43 nkat/mL on birch wood, together with moderate β-glucosidase and endoglucanase cellulolytic activities. The intermediate rot fungus S. commune was the strongest producer of β-glucosidase with activities up to 54 nkat/mL, and a notable producer of xylanase activity, even up to 620 nkat/mL, on birch wood. Low lignin-attacking but moderate activities against cellulose and hemicellulose were observed with the litter-decomposer C. cinerea on barley straw. Overall, our results imply that plant cell wall decomposition ability of taxonomically and ecologically divergent fungi is in line with their enzymatic decay strategy, which is fundamental in understanding their physiology and potential for biotechnological applications.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1262
Author(s):  
Laura Hasburgh ◽  
Samuel Zelinka ◽  
Amy Bishell ◽  
Grant Kirker

Shou sugi ban, also known as yakisugi, or just sugi ban, is an aesthetic wood surface treatment that involves charring the surface of dimensional lumber, such as exterior cladding. The goal of this research is to examine the effect of shou sugi ban on the flammability and decay resistance of wood. Several species and variants of commercially available sugi ban were tested. The flammability was examined from the heat release rate curves using the oxygen consumption method and cone calorimeter. Durability was examined with a soil block assay for one white-rot fungus and one brown-rot fungus. The testing showed that the shou sugi ban process did not systematically improve the flammability or durability of the siding


CERNE ◽  
2016 ◽  
Vol 22 (3) ◽  
pp. 223-232 ◽  
Author(s):  
Banyat Cherdchim ◽  
Jareeya Satansat

ABSTRACT Ethylene stimulation increases the rubber latex yield of live rubberwood (Hevea brasiliensis). Lumber samples from ethylene treated rubberwood (TRW) and from untreated rubberwood (URW) were compared mainly for their resistance to fungi, differences in the chemical composition between TRW and URW, and the antifungal activities of their aqueous extracts. The TRW had significantly higher lignin and extractives contents than the URW, but the TRW had comparatively poor resistance to fungal rotting. The white rot fungus Ganoderma lucidum and the brown rot fungus Gloeophyllum striantum caused in vitro significantly higher mass loss in TRW than in URW. This might be related to the phenolic compounds 2,4-ditert-butylphenol and 4-hydroxy-3,5- dimethoxy-benzaldehyde. The aqueous wood extracts strongly inhibited growth of G. lucidum, with lesser effects on the other fungi tested. Caffeine was detected in the TRW, but not the URW. However, the caffeine degraded so quickly that it had no effect on the 6 and 12 weeks fungal resistances of wood samples.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 779-788
Author(s):  
Maede Ahadnezhad ◽  
Soheila Izadyar ◽  
Davood Efhamisisi

The density, swelling, and fungal decay of poplar (Populus deltoides) wood treated with pistachio resin (PR) obtained from Pistacia atlantica were investigated. The white-rot fungus Trametes versicolor and the brown-rot fungus Coniophora puteana were used. Methanolic solutions of PR with different concentrations of 1%, 6%, 12%, and 15% were used as the preservative solution. Wood samples were saturated by two different vacuum/pressure (V/P) and dipping methods. The density, volumetric swelling of treated wood, and their mass loss (ML) caused by fungal decay were determined. The density of treated species increased to 15.4% and 5.8% for V/P and dipping methods, respectively, at 15% PR concentration. The volumetric swelling of the treated samples was reduced to 24.5% and 16.8% for V/P and dipping procedure, respectively, at 15% PR concentration. The mass loss of treated samples after exposure to T. versicolor was less than the untreated one (17.4% for V/P and 22.6% for dipping methods at 15% PR concentration). The results showed the better performance of V/P treatment in promotion of wood durability against fungal decay than the dipping method.


Holzforschung ◽  
1999 ◽  
Vol 53 (5) ◽  
pp. 459-464 ◽  
Author(s):  
C. Birkinshaw ◽  
C.J. McCarthy ◽  
N. Regan ◽  
M.D.C. Hale ◽  
D. Cahill ◽  
...  

Summary Specimens of Pinus sylvestris have been subject to decay by the brown rot fungus Coniophora puteana, the white rot fungus Phanerochaete chrysosporium, and to doses of γ irradiation sufficiently high to cause significant molecular damage. Specimens of Picea abies have been subject to decay by the brown rot fungus Postia placenta. The dynamic mechanical properties of the decayed and degraded materials have been assessed between −100 °C and 120 °C using in some cases a natural frequency instrument and in other cases a driven frequency instrument. The results obtained have allowed calculation of the temperature coefficients of modulus for the materials at various stages of decay or degradation, and these are relatively constant regardless of the history of the specimen. Such changes as do occur can be explained by modulus dependent frequency effects. The static mechanical properties of some specimens were also assessed by three point bending at 20 °C. Measured changes in dynamic stiffness and flexural modulus have been compared with the weight changes and the proportionality constant relating strength and stiffness loss to weight loss obtained for each situation. These show that in the case of fungal attack the dynamic stiffness falls more quickly than flexural strength, and that, as would be expected, the brown rot fungi are the more effective at reducing mechanical properties.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1102 ◽  
Author(s):  
Ladislav Reinprecht ◽  
Miroslav Repák

The European beech (Fagus sylvatica L.) wood was thermally modified in the presence of paraffin at the temperatures of 190 or 210 °C for 1, 2, 3 or 4 h. A significant increase in its resistance to the brown-rot fungus Poria placenta (by 71.4%–98.4%) and the white-rot fungus Trametes versicolor (by 50.1%–99.5%) was observed as a result of all modification modes. However, an increase in the resistance of beech wood surfaces to the mold Aspergillus niger was achieved only under more severe modification regimes taking 4 h at 190 or 210 °C. Water resistance of paraffin-thermally modified beech wood improved—soaking reduced by 30.2%–35.8% and volume swelling by 26.8%–62.9% after 336 h of exposure in water. On the contrary, its mechanical properties worsened—impact bending strength decreased by 17.8%–48.3% and Brinell hardness by 2.4%–63.9%.


Sign in / Sign up

Export Citation Format

Share Document