scholarly journals Synthetic peptide of the pineal gland can decrease morbidity and age-related pathology in male-rats kept in conditions of accelerated aging caused by disruption of photoperiodism

Author(s):  
Irina Anatolievna Vinogradova ◽  
Victoria Dmitrievna Yunash ◽  
Andrey Victorovich Bukalev ◽  
Mark Abramovich Zabezhinsky ◽  
Vladimir Nikolaevich Anisimov
2021 ◽  
Vol 11 (1) ◽  
pp. 77-82
Author(s):  
I. A. Vinogradova ◽  
Yu. P. Matveeva ◽  
O. V. Zhukova ◽  
V. D. Yunash ◽  
V. N. Anisimov

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Maryam Mazhar ◽  
Ahmad Ud Din ◽  
Hamid Ali ◽  
Guoqiang Yang ◽  
Wei Ren ◽  
...  

AbstractLife is indeed continuously going through the irreversible and inevitable process of aging. The rate of aging process depends on various factors and varies individually. These factors include various environmental stimuli including exposure to toxic chemicals, psychological stress whereas suffering with various illnesses specially the chronic diseases serve as endogenous triggers. The basic underlying mechanism for all kinds of stresses is now known to be manifested as production of excessive ROS, exhaustion of ROS neutralizing antioxidant enzymes and proteins leading to imbalance in oxidation and antioxidant processes with subsequent oxidative stress induced inflammation affecting the cells, tissues, organs and the whole body. All these factors lead to conventional cell death either through necrosis, apoptosis, or autophagy. Currently, a newly identified mechanism of iron dependent regulated cell death called ferroptosis, is of special interest for its implication in pathogenesis of various diseases such as cardiovascular disease, neurological disorders, cancers, and various other age-related disorders (ARD). In ferroptosis, the cell death occur neither by conventional apoptosis, necrosis nor by autophagy, rather dysregulated iron in the cell mediates excessive lipid peroxidation of accumulated lethal lipids. It is not surprising to assume its role in aging as previous research have identified some solid cues on the subject. In this review, we will highlight the factual evidences to support the possible role and implication of ferroptosis in aging in order to declare the need to identify and explore the interventions to prevent excessive ferroptosis leading to accelerated aging and associated liabilities of aging.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shoghag Panjarian ◽  
Jozef Madzo ◽  
Kelsey Keith ◽  
Carolyn M. Slater ◽  
Carmen Sapienza ◽  
...  

Abstract Background DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study, we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary dramatically from the population mean. Methods We generated whole-genome DNA methylation profiles (GSE160233) on purified epithelial cells and used publicly available Infinium HumanMethylation 450K array datasets (TCGA, GSE88883, GSE69914, GSE101961, and GSE74214) for discovery and validation. Results We found that hypermethylation in normal breast tissue is the best predictor of hypermethylation in cancer. Using unsupervised anomaly detection approaches, we found that about 10% of the individuals (39/427) were outliers for DNA methylation from 6 DNA methylation datasets. We also found that there were significantly more outlier samples in normal-adjacent to cancer (24/139, 17.3%) than in normal samples (15/228, 5.2%). Additionally, we found significant differences between the predicted ages based on DNA methylation and the chronological ages among outliers and not-outliers. Additionally, we found that accelerated outliers (older predicted age) were more frequent in normal-adjacent to cancer (14/17, 82%) compared to normal samples from individuals without cancer (3/17, 18%). Furthermore, in matched samples, we found that the epigenome of the outliers in the pre-malignant tissue was as severely altered as in cancer. Conclusions A subset of patients with breast cancer has severely altered epigenomes which are characterized by accelerated aging in their normal-appearing tissue. In the future, these DNA methylation sites should be studied further such as in cell-free DNA to determine their potential use as biomarkers for early detection of malignant transformation and preventive intervention in breast cancer.


1990 ◽  
Vol 126 (3) ◽  
pp. 461-466 ◽  
Author(s):  
M. N. Sillence ◽  
R. G. Rodway

ABSTRACT The effects of trenbolone acetate (TBA) on growth and on plasma concentrations of corticosterone were examined in male and female rats. At 5 weeks of age, rats were injected with TBA (0·8 mg/kg) dissolved in peanut oil, or with oil alone, daily for 10 days. In female rats, TBA caused an increase in weight gain (20–38%), a reduction in adrenal weight (19%) and a reduction in plasma concentrations of corticosterone (55%). In contrast, TBA-treated male rats showed no significant increase in weight gain, no significant change in adrenal weight and no reduction in plasma concentrations of corticosterone. The mechanism by which adrenal activity was suppressed in TBA-treated female rats was examined and the response compared with that to testosterone. Female rats (8 weeks old) were injected daily either with oil vehicle, TBA (0·8 mg/kg) or testosterone propionate (0·8 mg/kg). Testosterone increased weight gain (24%), but the growth response to TBA treatment was significantly greater (97%). A reduction in plasma concentrations of corticosterone (45%) was again observed in response to TBA. However, testosterone increased plasma concentrations of corticosterone (52%) above those of control values. Neither androgen affected plasma concentrations of ACTH. Finally, the effects of TBA were examined in 6-week-old female rats, to characterize further the apparent age-related increase in responsiveness. The growth response of 6-week-old rats (60–74%) was intermediate between that seen in 5- and 8-week-old animals. It is concluded that part of the anabolic activity of TBA may be related to a reduction in circulating concentrations of corticosterone. The effect of TBA on corticosterone concentrations differs from that of the natural androgen, testosterone, and does not appear to be mediated by a reduction in plasma concentrations of ACTH. Journal of Endocrinology (1990) 126, 461–466


1976 ◽  
Vol 146 (4) ◽  
pp. 427-432 ◽  
Author(s):  
Russel J. Reiter ◽  
Marcia G. Welsh ◽  
Mary K. Vaughan

Author(s):  
О. М. Ивко ◽  
Н. С. Линькова ◽  
А. Р. Ильина ◽  
А. А. Шарова ◽  
Г. А. Рыжак

Ночная работа приводит к десинхронизации биоритмов, нарушению мелатонинобразующей функции и ускоренному старению эпифиза человека. Одним из перспективных геропротекторов, восстанавливающих синтез эпифизарного мелатонина, является пептид AEDG ( Ala-Glu-Asp-Gly ). Последний в 1,7 раза повышает экскрецию 6-сульфатоксимелатонина в моче людей среднего возраста, у которых этот показатель исходно снижен. Кроме того, у людей со сниженной мелатонинобразующей функцией эпифиза, пептид AEDG нормализует повышенную экспрессию циркадных генов Clock и Csnk 1 e в лейкоцитах и в 2 раза повышает сниженную экспрессию гена Cry 2 в лимфоцитах крови. В основе геропротекторного эффекта пептида AEDG лежит его способность восстанавливать мелатонинобразующую функцию эпифиза через регуляцию экспрессии часовых генов человека. Night work provides biorhythms desynchronization, disorder of melatonin-producing function and accelerated pineal gland aging. One of the promising geroprotectors restoring the pineal melatonin synthesis is the AEDG ( Ala-Glu-Asp-Gly ) peptide. AEDG peptide increases in 1,7 times the 6-sulfatoxymelatonin (6-SOMT) excretion in the urine of middle-aged people. Moreover, AEDG peptide normalized circadian Clock and Csnk1e genes hyper expression in leukocytes in 1,9-2,1 times and increases the Cry 2 gene hypo expression in peripheral blood lymphocytes in 2 times in people with reduced melatonin-producing epiphysis function. The geroprotective effect of the AEDG peptide is based on its ability to restore the epiphysis melatonin-producing function by means regulation of human circadian genes expression.


2019 ◽  
Vol 3 (1) ◽  
pp. 105-130 ◽  
Author(s):  
Tyler G. Demarest ◽  
Mansi Babbar ◽  
Mustafa N. Okur ◽  
Xiuli Dan ◽  
Deborah L. Croteau ◽  
...  

Aging is a major risk factor for many types of cancer, and the molecular mechanisms implicated in aging, progeria syndromes, and cancer pathogenesis display considerable similarities. Maintaining redox homeostasis, efficient signal transduction, and mitochondrial metabolism is essential for genome integrity and for preventing progression to cellular senescence or tumorigenesis. NAD+is a central signaling molecule involved in these and other cellular processes implicated in age-related diseases and cancer. Growing evidence implicates NAD+decline as a major feature of accelerated aging progeria syndromes and normal aging. Administration of NAD+precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) offer promising therapeutic strategies to improve health, progeria comorbidities, and cancer therapies. This review summarizes insights from the study of aging and progeria syndromes and discusses the implications and therapeutic potential of the underlying molecular mechanisms involved in aging and how they may contribute to tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document