scholarly journals NAD+Metabolism in Aging and Cancer

2019 ◽  
Vol 3 (1) ◽  
pp. 105-130 ◽  
Author(s):  
Tyler G. Demarest ◽  
Mansi Babbar ◽  
Mustafa N. Okur ◽  
Xiuli Dan ◽  
Deborah L. Croteau ◽  
...  

Aging is a major risk factor for many types of cancer, and the molecular mechanisms implicated in aging, progeria syndromes, and cancer pathogenesis display considerable similarities. Maintaining redox homeostasis, efficient signal transduction, and mitochondrial metabolism is essential for genome integrity and for preventing progression to cellular senescence or tumorigenesis. NAD+is a central signaling molecule involved in these and other cellular processes implicated in age-related diseases and cancer. Growing evidence implicates NAD+decline as a major feature of accelerated aging progeria syndromes and normal aging. Administration of NAD+precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) offer promising therapeutic strategies to improve health, progeria comorbidities, and cancer therapies. This review summarizes insights from the study of aging and progeria syndromes and discusses the implications and therapeutic potential of the underlying molecular mechanisms involved in aging and how they may contribute to tumorigenesis.

2020 ◽  
Vol 21 (7) ◽  
pp. 2576 ◽  
Author(s):  
Sandra Buratta ◽  
Brunella Tancini ◽  
Krizia Sagini ◽  
Federica Delo ◽  
Elisabetta Chiaradia ◽  
...  

Beyond the consolidated role in degrading and recycling cellular waste, the autophagic- and endo-lysosomal systems play a crucial role in extracellular release pathways. Lysosomal exocytosis is a process leading to the secretion of lysosomal content upon lysosome fusion with plasma membrane and is an important mechanism of cellular clearance, necessary to maintain cell fitness. Exosomes are a class of extracellular vesicles originating from the inward budding of the membrane of late endosomes, which may not fuse with lysosomes but be released extracellularly upon exocytosis. In addition to garbage disposal tools, they are now considered a cell-to-cell communication mechanism. Autophagy is a cellular process leading to sequestration of cytosolic cargoes for their degradation within lysosomes. However, the autophagic machinery is also involved in unconventional protein secretion and autophagy-dependent secretion, which are fundamental mechanisms for toxic protein disposal, immune signalling and pathogen surveillance. These cellular processes underline the crosstalk between the autophagic and the endosomal system and indicate an intersection between degradative and secretory functions. Further, they suggest that the molecular mechanisms underlying fusion, either with lysosomes or plasma membrane, are key determinants to maintain cell homeostasis upon stressing stimuli. When they fail, the accumulation of undigested substrates leads to pathological consequences, as indicated by the involvement of autophagic and lysosomal alteration in human diseases, namely lysosomal storage disorders, age-related neurodegenerative diseases and cancer. In this paper, we reviewed the current knowledge on the functional role of extracellular release pathways involving lysosomes and the autophagic- and endo-lysosomal systems, evaluating their implication in health and disease.


2009 ◽  
Vol 9 ◽  
pp. 1449-1462 ◽  
Author(s):  
Baomin Li ◽  
Sonali Jog ◽  
Jose Candelario ◽  
Sita Reddy ◽  
Lucio Comai

Syndromes of accelerated aging could provide an entry point for identifying and dissecting the cellular pathways that are involved in the development of age-related pathologies in the general population. However, their usefulness for aging research has been controversial, as it has been argued that these diseases do not faithfully reflect the process of natural aging. Here we review recent findings on the molecular basis of two progeroid diseases, Werner syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), and highlight functional connections to cellular processes that may contribute to normal aging.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Camille Cohen ◽  
Legoff Oceanc ◽  
Frederic Soysouvanh ◽  
Marine Tanou ◽  
Florence Vasseur ◽  
...  

Abstract Background and Aims In age-related chronic kidney disease (CKD), the most frequent histological lesion observed is glomerulosclerosis. The molecular mechanisms involved in this deterioration process are unclear, but cellular senescence might play a role. Method By combining several murine models of physiological and accelerated aging with transgenic animals and in vitro models, we discovered the role of endothelial senescence in the development of glomerular lesions. Results These senescent glomerular endothelial cells secreted several molecules, grouped under the senescence associated secretory phenotype (SASP) including the plasminogen activator inhibitor 1 (PAI-1). Specific deletion of PAI-1 in endothelial cells prevented the development of glomerulosclerosis during physiological and accelerated aging, by decreasing podocyte loss. In addition, we showed that PAI-1 mediates a detrimental endothelial-podocyte crosstalk, as incubation of podocytes by supernatant of senescent glomerular endothelial cells led to their detachment. Consistently, preincubation of the senescent supernatant with tiplaxtinin, a PAI-1 inhibitor, preserved podocytes. More importantly, we demonstrated that these data are relevant to humans. In fact, PAI-1 staining the day of the transplantation was predictive of kidney allograft dysfunction 12 months after transplantation from elderly donors. Conclusion In conclusion, our study uncovers the critical role played by endothelial senescence in the development of glomerulosclerosis during aging and identified PAI-1 as a novel promising biomarker for predicting kidney dysfunction in patients receiving a kidney from elderly donors.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2420
Author(s):  
Yohan Santin ◽  
Philippe Lluel ◽  
Pascal Rischmann ◽  
Xavier Gamé ◽  
Jeanne Mialet-Perez ◽  
...  

Cellular senescence is a state of cell cycle arrest induced by repetitive cell mitoses or different stresses, which is implicated in various physiological or pathological processes. The beneficial or adverse effects of senescent cells depend on their transitory or persistent state. Transient senescence has major beneficial roles promoting successful post-injury repair and inhibiting malignant transformation. On the other hand, persistent accumulation of senescent cells has been associated with chronic diseases and age-related illnesses like renal/urinary tract disorders. The deleterious effects of persistent senescent cells have been related, in part, to their senescence-associated secretory phenotype (SASP) characterized by the release of a variety of factors responsible for chronic inflammation, extracellular matrix adverse remodeling, and fibrosis. Recently, an increase in senescent cell burden has been reported in renal, prostate, and bladder disorders. In this review, we will summarize the molecular mechanisms of senescence and their implication in renal and urinary tract diseases. We will also discuss the differential impacts of transient versus persistent status of cellular senescence, as well as the therapeutic potential of senescent cell targeting in these diseases.


2015 ◽  
Vol 2015 ◽  
pp. 1-24 ◽  
Author(s):  
Mika Reinisalo ◽  
Anna Kårlund ◽  
Ali Koskela ◽  
Kai Kaarniranta ◽  
Reijo O. Karjalainen

Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer’s disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Na Xie ◽  
Lu Zhang ◽  
Wei Gao ◽  
Canhua Huang ◽  
Peter Ernst Huber ◽  
...  

Abstract Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 150 ◽  
Author(s):  
Qian Cai ◽  
Yu Young Jeong

Mitochondrial dysfunction is a central aspect of aging and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. Mitochondria are the main cellular energy powerhouses, supplying most of ATP by oxidative phosphorylation, which is required to fuel essential neuronal functions. Efficient removal of aged and dysfunctional mitochondria through mitophagy, a cargo-selective autophagy, is crucial for mitochondrial maintenance and neuronal health. Mechanistic studies into mitophagy have highlighted an integrated and elaborate cellular network that can regulate mitochondrial turnover. In this review, we provide an updated overview of the recent discoveries and advancements on the mitophagy pathways and discuss the molecular mechanisms underlying mitophagy defects in Alzheimer’s disease and other age-related neurodegenerative diseases, as well as the therapeutic potential of mitophagy-enhancing strategies to combat these disorders.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Maria Luca ◽  
Antonina Luca ◽  
Carmela Calandra

Nitro-oxidative stress (NOS) plays a fundamental role in aging, as well as in the pathogenesis of neurodegenerative disorders, and major depression (MD). The latter is a very frequent psychiatric illness characterized by accelerated aging, neurodegeneration, high comorbidity with age-related disorders, and premature mortality; all of these conditions find an explanation in an altered redox homeostasis. If aging, neurodegeneration, and major depression share a common biological base in their pathophysiology, common therapeutic tools could be investigated for the prevention and treatment of these disorders. As an example, antidepressants have been demonstrated to present neuroprotective and anti-inflammatory properties and to stimulate neurogenesis. In parallel, antioxidants that stimulate the antioxidant defense systems and interact with the monoaminergic system show an antidepressant-like activity. Further research on this topic could lead, in the near future, to the expansion of the therapeutic possibilities for the treatment of NOS-related disorders.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 968
Author(s):  
Yousra Hamdan ◽  
Loubna Mazini ◽  
Gabriel Malka

Exosomes are the main actors of intercellular communications and have gained great interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-coding RNA, especially micro-RNAs (mi-RNAs). Exosomes’ cargo is released in the neighboring microenvironment but is also expected to act on distant tissues or organs. Different biological processes such as cell development, growth and repair, senescence, migration, immunomodulation, and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs. Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate tissue functionality and regeneration by targeting different tissues and involving different pathways but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related to the biological fluids that are reported differently between young and old individuals. However, their underlying mechanisms modulating cell senescence and aging are still not fully understood, and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes’ cargo. Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA regulation in the different aging processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Daniela Gradinaru ◽  
Anca Ungurianu ◽  
Denisa Margina ◽  
Maria Moreno-Villanueva ◽  
Alexander Bürkle

Since its discovery in 1905 and its employment in everyday medical practice as a local anesthetic, to its highly controversial endorsement as an “anti-aging” molecule in the sixties and seventies, procaine is part of the history of medicine and gerontoprophylaxis. Procaine can be considered a “veteran” drug due to its long-time use in clinical practice, but is also a molecule which continues to incite interest, revealing new biological and pharmacological effects within novel experimental approaches. Therefore, this review is aimed at exploring and systematizing recent data on the biochemical, cellular, and molecular mechanisms involved in the antioxidant and potential geroprotective effects of procaine, focusing on the following aspects: (1) the research state-of-the-art, through an objective examination of scientific literature within the last 30 years, describing the positive, as well as the negative reports; (2) the experimental data supporting the beneficial effects of procaine in preventing or alleviating age-related pathology; and (3) the multifactorial pathways procaine impacts oxidative stress, inflammation, atherogenesis, cerebral age-related pathology, DNA damage, and methylation. According to reviewed data, procaine displayed antioxidant and cytoprotective actions in experimental models of myocardial ischemia/reperfusion injury, lipoprotein oxidation, endothelial-dependent vasorelaxation, inflammation, sepsis, intoxication, ionizing irradiation, cancer, and neurodegeneration. This analysis painted a complex pharmacological profile of procaine: a molecule that has not yet fully expressed its therapeutic potential in the treatment and prevention of aging-associated diseases. The numerous recent reports found demonstrate the rising interest in researching the multiple actions of procaine regulating key processes involved in cellular senescence. Its beneficial effects on cell/tissue functions and metabolism could designate procaine as a valuable candidate for the well-established Geroprotectors database.


Sign in / Sign up

Export Citation Format

Share Document