scholarly journals Differential-difference method with approximation of the inverse operator

Author(s):  
Stepan Shakhno ◽  
Halyna Yarmola

The problem of finding an approximate solution of a nonlinear equation with operator decomposition is considered. For equations of this type, a nonlinear operator can be represented as the sum of two operators – differentiable and nondifferentiable. For numerical solving such an equation, a differential-difference method, which contains the sum of the derivative of the differentiable part and the divided difference of the nondifferentiable part of the nonlinear operator, is proposed. Also, the proposed iterative process does not require finding the inverse operator. Instead of inverting the operator, its one-step approximation is used. The analysis of the local convergence of the method under the Lipschitz condition for the first-order divided differences and the bounded second derivative is carried out and the order of convergence is established.

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1242
Author(s):  
Ramandeep Behl ◽  
Sonia Bhalla ◽  
Eulalia Martínez ◽  
Majed Aali Alsulami

There is no doubt that the fourth-order King’s family is one of the important ones among its counterparts. However, it has two major problems: the first one is the calculation of the first-order derivative; secondly, it has a linear order of convergence in the case of multiple roots. In order to improve these complications, we suggested a new King’s family of iterative methods. The main features of our scheme are the optimal convergence order, being free from derivatives, and working for multiple roots (m≥2). In addition, we proposed a main theorem that illustrated the fourth order of convergence. It also satisfied the optimal Kung–Traub conjecture of iterative methods without memory. We compared our scheme with the latest iterative methods of the same order of convergence on several real-life problems. In accordance with the computational results, we concluded that our method showed superior behavior compared to the existing methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liang Zhao

This paper presents a novel abnormal data detecting algorithm based on the first order difference method, which could be used to find out outlier in building energy consumption platform real time. The principle and criterion of methodology are discussed in detail. The results show that outlier in cumulative power consumption could be detected by our method.


1972 ◽  
Vol 39 (3) ◽  
pp. 689-695 ◽  
Author(s):  
W. W. Recker

The two-dimensional equations of magnetoelastodynamics are considered as a symmetric hyperbolic system of linear first-order partial-differential equations in three independent variables. The characteristic properties of the system are determined and a numerical method for obtaining the solution to mixed initial and boundary-value problems in plane magnetoelastodynamics is presented. Results on the von Neumann necessary condition are presented. Application of the method to a problem which has a known solution provides further numerical evidence of the convergence and stability of the method.


1975 ◽  
Vol 53 (23) ◽  
pp. 2590-2592
Author(s):  
J. Cejpek ◽  
J. Dobeš

The reaction processes in which a one-step transition is forbidden are analyzed from the point of view of the first order perturbation theory. The interference between two competing two-step reaction paths is found to be always constructive. A qualitative explanation of the experimentally observed reaction intensities is presented.


Author(s):  
Mondher Yahiaoui

In this paper, we present a fourth-order accurate and a seventh-order accurate, one-step compact difference methods. These methods can be used to solve initial or boundaryvalue problems which can be modeled by a first-order linear system of differential equations. It is then shown in detail how these methods can be used to solve vibration problems of onedimensional continuous systems. Natural frequencies of a cantilever beam in transverse vibrations are computed and the results are compared to analytical ones to prove the high accuracy and efficiency of both methods. A comparison was also made to a finite element solution and the results have shown that both compact-difference methods yield more accurate values even with a reduced number of intervals.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1251
Author(s):  
Munish Kansal ◽  
Alicia Cordero ◽  
Sonia Bhalla ◽  
Juan R. Torregrosa

In the recent literature, very few high-order Jacobian-free methods with memory for solving nonlinear systems appear. In this paper, we introduce a new variant of King’s family with order four to solve nonlinear systems along with its convergence analysis. The proposed family requires two divided difference operators and to compute only one inverse of a matrix per iteration. Furthermore, we have extended the proposed scheme up to the sixth-order of convergence with two additional functional evaluations. In addition, these schemes are further extended to methods with memory. We illustrate their applicability by performing numerical experiments on a wide variety of practical problems, even big-sized. It is observed that these methods produce approximations of greater accuracy and are more efficient in practice, compared with the existing methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yonghui Ling ◽  
Xiubin Xu ◽  
Shaohua Yu

The present paper is concerned with the semilocal as well as the local convergence problems of Newton-Steffensen’s method to solve nonlinear operator equations in Banach spaces. Under the assumption that the second derivative of the operator satisfies -condition, the convergence criterion and convergence ball for Newton-Steffensen’s method are established.


Sign in / Sign up

Export Citation Format

Share Document