scholarly journals About the work of Vinnytsia regional branch of the Ukrainian Society of Plant Physiologists

2020 ◽  
Vol 52 (5) ◽  
pp. 422-433
Author(s):  
V.G. Kuryata ◽  

The work and the main scientific results of the Vinnytsia branch of the USPP from the moment of its formation to the present time are analyzed. The main direction of research is exogenous regulation of plants source-sink relations in the systems «photosynthesis—growth», «depot of assimilates—growth» in the heterotrophic phase of plant development, and «macrosymbiont—microsymbiont» in symbiotic nitrogen fixation systems. Gibberellin and antigibberellin preparations (retardants) were used to create different tension of source-sink relations. It was found that under the influence of retardants, the decrease in the linear growth rate was accompanied by an increase in the cytokinins content with a decrease in the indoleacetic acid content in stems and leaves tissues of a wide range of plants. The free gibberellins activity was lower compared to control. At the same time, the content of these phytohormones antagonist, abscisic acid, increased. The retardants increased the stem branching, leaves number, weight and leaf surface area, optimized the leaves mesostructural organization, resulting in an increase in the photosynthetic net productivity. These changes lead to increased crop productivity. Under the conditions of artificial combination of external (light/dark) and hormonal factors (gibberellic acid and retardants) during seed germination, changes in the functioning of the source-sink system in the heterotrophic stage of plant development from seeds with different reserve substances types were studied. Gibberellin stimulated the starch breakdown in both light and dark, but under conditions of germination in the dark, the rate of reserve seed starch use was higher. Gibberellin also stimulated the seed reserve proteins hydrolysis, but the process began after intensive starch hydrolysis. Peculiarities of regulation of source-sink relations in the system «macro—microsymbiont» during the processes of symbiotic nitrogen fixation under the action of antigibberellin preparations — retardants are revealed. It was found that the typical reaction of soybean plants to the paclobutrazol application was a decrease in the free form gibberellins activity and an increase in the abscisic acid content, which led to changes in morphogenesis. Under the retardants action, the processes of formation of the symbiotic complex «soybean—Bradyrhizobium japonicum» intensify, nitrogenase activity increased, crop yield rised.

1979 ◽  
Vol 25 (3) ◽  
pp. 298-301 ◽  
Author(s):  
Ilona Barabás ◽  
Tibor Sik

In two out of three pleiotropic mutants of Rhizobium meliloti, defective in nitrate reductase induced by amino acid utilization in vegetative bacteria and in symbiotic nitrogen fixation, nitrogenase activity could be restored completely by purines and partially by the amino acids L-glutamate, L-aspartate, L-glutamine, and L-asparagine. The compounds restoring effectiveness in nitrogen fixation did not restore nitrate reductase activity in vegetative bacteria. The restoration of effectiveness supports our earlier conclusion that the mutation is not in the structural gene for a suggested common subunit of nitrogenase and nitrate reductase.


2004 ◽  
Vol 16 (3) ◽  
pp. 137-146 ◽  
Author(s):  
Neera Garg ◽  
Ranju Singla

Four cultivars of chickpea, two of them of Mediterranean origin (kabuli), CSG 9651, BG 267 and two Indian (desi) types, CSG 8962, DCP 92-3, differing in their salt sensitivities were identified after screening ten genotypes in saline soils. The cultivars CSG 9651 and CSG 8962 were salt tolerant while BG 267 and DCP 92-3 were salt sensitive, respectively. The seeds of different cultivars were inoculated with Mesorhizobium ciceri, strain F: 75 and the plants were grown in the greenhouse. After the establishment of symbiosis, 15-day-old seedlings were administered doses of saline at varying concentrations (0, 4, 6, 8 dSm-1 NaCl, Na2SO4, CaCl2). Plants were harvested at 40, 70 and 100 days after sowing, for analyses. The main aim was to compare the relative salt tolerance of both desi and kabuli cultivars in terms of nitrogen fixation and carbon metabolism, as well as to ascertain whether the negative effects of saline stress on nitrogen fixation were due to a limitation of photosynthate supply to the nodule or to a limitation on the nodular metabolism that sustains nitrogenase activity. Plant growth, nodulation and nitrogenase activity was more severely affected in BG 267 and DCP 92-3 under salinity treatments (6 and 8 dSm-1) compared with CSG 9651 and CSG 8962. Nodule number as well as nodule mass increased under salt stress in CSG 9651 and CSG 8962 which might be responsible for their higher nitrogen fixation. Salinity reduced leaf chlorophyll and Rubisco activities in all cultivars. However, tolerant cultivars CSG 9651 and CSG 8962 showed smaller declines than the sensitive ones. Phosphoenolpyruvate carboxylase (PEPCase) activity increased significantly in the nodules of tolerant cultivars under salt stress at all harvests, and this was clearly related to salt concentrations. Our results suggest that in salt-affected soils tolerant cultivars have more efficient nodulation and support higher rates of symbiotic nitrogen fixation than the sensitive cultivars.


2009 ◽  
Vol 191 (8) ◽  
pp. 2593-2600 ◽  
Author(s):  
Chrysanthi Kalloniati ◽  
Daniela Tsikou ◽  
Vasiliki Lampiri ◽  
Mariangela N. Fotelli ◽  
Heinz Rennenberg ◽  
...  

ABSTRACT Carbonic anhydrase (CA) (EC 4.2.1.1) is a widespread enzyme catalyzing the reversible hydration of CO2 to bicarbonate, a reaction that participates in many biochemical and physiological processes. Mesorhizobium loti, the microsymbiont of the model legume Lotus japonicus, possesses on the symbiosis island a gene (msi040) encoding an α-type CA homologue, annotated as CAA1. In the present work, the CAA1 open reading frame from M. loti strain R7A was cloned, expressed, and biochemically characterized, and it was proven to be an active α-CA. The biochemical and physiological roles of the CAA1 gene in free-living and symbiotic rhizobia were examined by using an M. loti R7A disruption mutant strain. Our analysis revealed that CAA1 is expressed in both nitrogen-fixing bacteroids and free-living bacteria during growth in batch cultures, where gene expression was induced by increased medium pH. L. japonicus plants inoculated with the CAA1 mutant strain showed no differences in top-plant traits and nutritional status but consistently formed a higher number of nodules exhibiting higher fresh weight, N content, nitrogenase activity, and δ13C abundance. Based on these results, we propose that although CAA1 is not essential for nodule development and symbiotic nitrogen fixation, it may participate in an auxiliary mechanism that buffers the bacteroid periplasm, creating an environment favorable for NH3 protonation, thus facilitating its diffusion and transport to the plant. In addition, changes in the nodule δ13C abundance suggest the recycling of at least part of the HCO3 − produced by CAA1.


2021 ◽  
Vol 3 ◽  
Author(s):  
Mariana Sotelo ◽  
Ana Claudia Ureta ◽  
Socorro Muñoz ◽  
Juan Sanjuán ◽  
Jorge Monza ◽  
...  

Biological nitrogen fixation by the Rhizobium-legume symbiosis allows the conversion of atmospheric nitrogen into ammonia within root nodules mediated by the nitrogenase enzyme. Nitrogenase activity results in the evolution of hydrogen as a result of a side reaction intrinsic to the activity of this enzyme. Some rhizobia, and also other nitrogen fixers, induce a NiFe uptake hydrogenase (Hup) to recycle hydrogen produced by nitrogenase, thus improving the efficiency of the nitrogen fixation process. In this work we report the generation and symbiotic behavior of hydrogenase-positive Rhizobium leguminosarum and Mesorhizobium loti strains effective in vetch (Vicia sativa) and birsfoot trefoil (Lotus corniculatus) forage crops, respectively. The ability of hydrogen recycling was transferred to these strains through the incorporation of hup minitransposon TnHB100, thus leading to full recycling of hydrogen in nodules. Inoculation of Vicia and Lotus plants with these engineered strains led to significant increases in the levels of nitrogen incorporated into the host legumes. The level of improvement of symbiotic performance was dependent on the recipient strain and also on the legume host. These results indicate that hydrogen recycling has the potential to improve symbiotic nitrogen fixation in forage plants.


2018 ◽  
Author(s):  
Patricia Gil-Díez ◽  
Manuel Tejada-Jiménez ◽  
Javier León-Mediavilla ◽  
Jiangqi Wen ◽  
Kirankumar S. Mysore ◽  
...  

ABSTRACTSymbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron-molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. MtMOT1.2 is aMedicago truncatulaMOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. A loss-of-functionmot1.2-1mutant showed reduced growth compared to wild-type plants when nitrogen fixation was required, but not when nitrogen was provided as nitrate. While no effect on molybdenum-dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen-fixing nodules, since genetic complementation with a wild-typeMtMOT1.2gene or molybdate-fortification of the nutrient solution, both restored wild-type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.


2010 ◽  
Vol 5 (4) ◽  
pp. 440-443 ◽  
Author(s):  
Akiyoshi Tominaga ◽  
Maki Nagata ◽  
Koichi Futsuki ◽  
Hidetoshi Abe ◽  
Toshiki Uchiumi ◽  
...  

2019 ◽  
Author(s):  
Viviana Escudero ◽  
Isidro Abreu ◽  
Eric del Sastre ◽  
Manuel Tejada-Jiménez ◽  
Camile Larue ◽  
...  

SUMMARYSymbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires of relatively large levels of transition metals. These elements act as cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process participated by a number of metal transporters and small organic molecules that mediate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this non-proteinogenic amino acid forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, a phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would be the result of the altered iron distribution in nas2-1 nodules, as indicated by X-ray fluorescence studies. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.Significance StatementNicotianamine synthesis mediated by MtNAS2 is important for iron allocation for symbiotic nitrogen fixation by rhizobia in Medicago truncatula root nodules.


2012 ◽  
Vol 14 ◽  
pp. 178-188
Author(s):  
A.V Pirog ◽  
O.A. Dmitruk ◽  
A.E. Mamchur ◽  
L.P. Kolomiets

The paper outlines the results of experiments with the lupine yellow of Progressive cultivar. It was established that its infection with bean yellow mosaic virus reduces the indices of plants growth and development (decrease of plant mass on 14,0-30,4 %, root mass – on 8-24 % in different phases of ontogenesis, area of leave surface – on 10 %). The viral infection prevents the realization of the photosynthesis and symbiotic nitrogen fixation potentials (the reduction of chlorophyll a contents in leaf on 5,2 %, chlorophyll b – on 6,5 %, nodule masses – on 13-32 %, nitrogenase activity – on 9,1 %). That reduces green mass (on 15 %) and grain productivity (the amount formed bob in phase of the blossom was decreased on 27,5 %).


2019 ◽  
Author(s):  
Viviana Escudero ◽  
Isidro Abreu ◽  
Manuel Tejada-Jiménez ◽  
Elena Rosa-Núñez ◽  
Julia Quintana ◽  
...  

ABSTRACTIron is an essential cofactor for symbiotic nitrogen fixation. It is required by many of the enzymes facilitating the conversion of N2into NH4+by endosymbiotic bacteria living within root nodule cells, including signal transduction proteins, O2homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Model legumeMedicago truncatula Ferroportin2(MtFPN2) is a nodule-specific gene that encodes an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature, and in the symbiosome membranes that contain the nitrogen-fixing bacteria in the differentiation and early-fixation zones of the nodules. Loss-of-function ofMtFPN2leads to altered iron distribution and speciation in nodules, which causes a reduction in nitrogenase activity and in biomass production. Using promoters with different tissular activity to driveMtFPN2expression inMtFPN2mutants, we determined that MtFPN2-facilitated iron delivery across symbiosomes is essential for symbiotic nitrogen fixation, while its presence in the vasculature does not seem to play a major role in in the conditions tested.


Sign in / Sign up

Export Citation Format

Share Document